WO2003006723A1 - Resin compositions for composite fiber - Google Patents

Resin compositions for composite fiber Download PDF

Info

Publication number
WO2003006723A1
WO2003006723A1 PCT/JP2002/006996 JP0206996W WO03006723A1 WO 2003006723 A1 WO2003006723 A1 WO 2003006723A1 JP 0206996 W JP0206996 W JP 0206996W WO 03006723 A1 WO03006723 A1 WO 03006723A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin
carbon fiber
ultrafine
fibers
Prior art date
Application number
PCT/JP2002/006996
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yasuda
Motoyoshi Ito
Masao Irisawa
Asao Oya
Original Assignee
Calp Corporation
Gun Ei Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calp Corporation, Gun Ei Chemical Industry Co., Ltd. filed Critical Calp Corporation
Publication of WO2003006723A1 publication Critical patent/WO2003006723A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a resin composition for a composite fiber, a composite fiber comprising the resin composition, an ultrafine carbon fiber obtained by carbonizing the composite fiber, an ultrafine activated carbon fiber obtained by activating the carbon fiber, and It relates to a shaped article of fiber.
  • Funinol-based carbon fibers obtained by carbonizing FUNOOL resin fibers and activated carbon fibers obtained by activating them have excellent heat resistance, chemical resistance, conductivity, etc. Insulation materials, sealing materials, canisters for automobiles, flue gas desulfurization adsorbents, dioxin adsorbents. Charge double layer capacitors, lithium batteries, charge double layer capacitors, fuel cell electrode materials, separators, etc. It is used in a wide range of fields, and further use is expected.
  • One of the methods for further improving the performance of such carbon fibers is to make the fibers extremely fine.
  • electrode materials as an application development of ultrafine carbon fibers
  • by further activating ultrafine carbon fibers with a large surface area per unit weight (specific surface area) to obtain ultrafine activated carbon fibers higher performance can be achieved. It can be expected as a material with high quality.
  • ultrafine carbon fiber as a filler for composite materials, not only can a high-rigidity composite material be obtained, but also as a high-rigidity material that can be used for thin-walled molded products. And high conductive paths are formed. A conductive material can be obtained.
  • phenol resin which is a raw material of phenol resin fibers
  • phenol resin fibers is an amorphous resin and has a low degree of polymerization, so that spinning is difficult.
  • the obtained fininol resin fiber had problems that strength and elongation were insufficient and that it was extremely brittle. For this reason, there is a problem that productivity is extremely reduced in a method of increasing the spinning speed by using a small-diameter spinneret.
  • the discharged phenol resin is cooled and solidified at a position very close to the spinneret, the drawing effect during spinning can hardly be expected, and the fiber diameter was limited to about 12 m.
  • a method for obtaining a phenolic ultrafine carbon fiber is disclosed in Japanese Unexamined Patent Publication No. Although it is proposed in Japanese Patent Publication No. 226, etc., when simply combining a phenolic resin and a polyethylene resin, the ultrafine carbon fiber finally obtained shrinks or the fibers are fused together. There is a problem of doing so. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and provides a resin composition for obtaining a conjugate fiber suitable as a precursor of an ultrafine carbon fiber, and an ultrafine carbon fiber obtained by carbonizing the conjugate fiber. It is an object of the present invention to provide an ultrafine activated carbon fiber obtained by activating this carbon fiber, and a shaped article obtained by shaping these fibers.
  • a resin resin composition in which a phenolic resin and a specific polypropylene or a specific polyethylene are mixed at a specific ratio is a resin set for a composite fiber.
  • the composite fiber obtained by spinning the resin composition is suitable as a precursor of the ultrafine carbon fiber, and the average fiber diameter is obtained by carbonizing the composite fiber. It was found that ultrafine carbon fibers having an average particle diameter of 0.5 or less were obtained, and by activating this ultrafine carbon fiber, an ultrafine activated carbon fiber was obtained.
  • the present invention has been completed based on such findings.
  • the MI (melt index) measured under the conditions of 10 to 50% by mass of the phenolic resin and a temperature of 230 ° (: a load of 21.18 N) is 10 to 1%. 0 0 g 1 0 minute polypropylene 9 0-5 0 consist mass% conjugate fiber resin composition, 1 0-5 0 mass% phenol resin and density 0. 9 4 0 g / cm 3 or more, the temperature MI (mel index) measured under the condition of 190 ° C and load of 2.
  • Resin composition for composite fiber consisting of 90 to 50% by mass of polyethylene of 30 g / 10 minutes, having an average fiber diameter of 5 to 100 m obtained by spinning these resin compositions.
  • a conjugate fiber an ultrafine carbon fiber having an average fiber diameter of 0.5 ⁇ m or less obtained by carbonizing the conjugate fiber, and an ultrafine activated carbon fiber obtained by activating this ultrafine carbon fiber. Is what you do.
  • the present invention also provides a shaped article obtained by shaping these fibers.
  • Fig. 1 shows the aggregate of the fuynol-based ultrafine carbon fibers in Example 1.
  • Fig. 1 shows the aggregate of the fuynol-based ultrafine carbon fibers in Example 1.
  • Figure 3 shows the phenolic carbon fiber aggregate in Comparative Example 1.
  • Figure 4 shows the aggregate of phenolic carbon fibers in Comparative Example 1.
  • Figure 5 shows the aggregate of the phenolic microfine carbon fibers in Comparative Example 2.
  • Figure 6 shows the aggregate of the fininol-based ultrafine carbon fibers in Comparative Example 2.
  • the funinol resin used in the present invention is obtained by subjecting a funinol and an aldehyde to a condensation polymerization reaction in the presence of a reaction catalyst.
  • a reaction catalyst for example, Phenol, o_cresol, m-cresol, p-cresol, bisphenol A, 2,3—xylenol, 3,5—xylenol, p—tertiary butylphenol, resorcinol And the like.
  • aldehydes include formaldehyde, paraformaldehyde, hexamethylene tetramine, furfural, benzaldehyde, and salicylaldehyde.
  • the molar ratio between the aldehydes and the phenols is not particularly limited, but is preferably 0.6: 1 to 0.886: 1.
  • the reaction catalyst include inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as oxalic acid and p-toluenesulfonic acid, oxycarboxylic acids such as citric acid and tartaric acid, and zinc compounds such as zinc chloride and zinc acetate. Is mentioned.
  • the phenol resin used in the present invention is not limited to a linear molecule but may be a partially branched molecule.
  • the composition may be a single phenol resin or a mixture of two or more components at an arbitrary ratio.
  • the molecular weight of the phenol resin is also not particularly limited, but in order to be fusible in a temperature range appropriate for melt spinning and to have a viscosity range appropriate for melt spinning, the average molecular weight is from 500 to 50, It is preferably in the range of 0 0 0.
  • the softening point of the phenol resin is not particularly limited, but is preferably 90 ° C. or more, and particularly preferably 120 to 130 ° C. In the present invention, a novolac type phenol resin having a softening point of 90 ° C. or more is preferable.
  • Examples of the polypropylene used in the present invention include homopolypropylene, block polypropylene and random polypropylene.
  • the homopolypropylene is a resin obtained by polymerizing propylene alone, and the block polypropylene and the random polypropylene are It is a copolymer of propylene and another comonomer.
  • the other comonomer use ethylene or C4 to C6 olefin (1-butene, 1-pentene, 1-hexene, etc.) Can be.
  • polyethylene examples include high-pressure low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other homopolymers of ethylene or copolymers of ethylene and ⁇ -olefin; 'Copolymers of ethylene with other vinyl monomers, such as vinyl acetate copolymers, and the like.
  • Examples of the ⁇ -olefin copolymerized with ethylene include propylene, 1-butene, 4-methyl-11-pentene, 11-hexene, and 1-octene.
  • Other vinyl monomers include, for example, butyl esters such as butyl acetate; (meth) acrylic acid, (methyl) methyl acrylate, (meth) ethyl acrylate, Examples include (meth) acrylic acid such as ⁇ -butyl (meth) acrylate and its alkyl ester.
  • the ⁇ I (mel to index) measured under the condition of a temperature of 230 ° (: load 21.18 ⁇ ) is 10 to 100 g / 10 min.
  • the MI of the polypropylene is less than 10 g / 10 minutes, the phenolic resin islands in the sea-island structure will not be formed well when producing a conjugate fiber described later, and the spinnability and the like will be significantly reduced.
  • the MI exceeds 100 g / 10 minutes, the sea-island structure with the phenol resin becomes non-uniform, so that the spinnability is remarkably reduced and stable fiber formation cannot be performed.
  • polyethylene if the density is less than 0.940 g / cm, the carbon fibers are shrunk in the step of carbonizing the composite fibers. Density polyethylene, the preferred properly a 0. 9 4 0 ⁇ 0. 9 6 8 g / cm 3.
  • the fiber will be cut when spinning the conjugate fiber, making it difficult to perform good spinning. If the MI of the polyethylene exceeds 30 g / 10 minutes, phase separation occurs between the phenol resin and the polyethylene, so that the fibers are cut and it becomes difficult to perform good spinning.
  • the mixing ratio of the phenol resin to the polypropylene or the polyethylene is 10 to 50% by mass of the phenol resin and 90 to 50% by mass of the propylene resin or the polyethylene.
  • resin 1 0-3 0 weight 0/0, polypropylene or port Ryechiren is 9 0-7 0% by weight. If the phenolic resin content is less than 10% by mass, sufficient fininol-based ultrafine carbon fibers cannot be obtained, and if the phenolic resin content exceeds 50% by mass, a good sea-island structure cannot be obtained. Deterioration or the structure of carbon fiber obtained by carbonization becomes uneven.
  • additives may be added to the resin composition for composite fibers of the present invention as needed.
  • the additive include an antioxidant, an ultraviolet absorber, a pigment, and a dye.
  • the resin composition for a conjugate fiber of the present invention can be obtained by mixing and kneading a fu ⁇ ol resin with polypropylene or polyethylene by a known method.
  • a known kneading apparatus can be used, and examples thereof include an extruder-type kneading machine, a mixing roll, a Banbury mixer, and a high-speed twin-screw continuous mixer.
  • H The kneading time of the phenolic resin and polypropylene or polyethylene is appropriately selected depending on the amount of the resin, the mixing ratio of the phenolic resin and the polypropylene or polyethylene, and the desired fiber diameter of the phenolic resin as an island component.
  • the kneading temperature of the phenol resin and the polypropylene or polyethylene is not particularly limited, but is preferably in the range of 180 to 280 ° C, more preferably in the range of 200 to 260 ° C. It is.
  • the resin composition thus obtained is extruded in a molten state from a spinneret and melt-spun to form a sea-island composite in which the sea component is a polyolefin resin and the island component is a fuyunol resin.
  • Fiber can be obtained. Further, by subjecting the island component phenol resin to a curing treatment, a cured composite fiber can be obtained. Next, the cured composite fiber is carbonized under an inert atmosphere to obtain a fluorinated ultrafine carbon fiber. By activating this ultrafine carbon fiber, an ultrafine activated carbon fiber can be obtained.
  • the finol-based ultrafine carbon fiber can be obtained by simply carbonizing the conjugate fiber, so that the working environment is remarkably improved and the finol-based ultrafine carbon fiber can be easily manufactured.
  • the temperature during melt spinning is not particularly limited, but is preferably in the range of 150 to 300 ° C, more preferably in the range of 160 to 250 ° C.
  • the pore diameter of the spinneret is appropriately selected depending on the fiber diameter of the intended conjugate fiber, and is not particularly limited, but is preferably from 0.1 to 5.0 mm, more preferably from 0.2 to 4.0 mm.
  • the melting method a known method can be used, and examples thereof include an extruder method and a melter method.
  • the heating method any of an electric heating method, a steam heating method, and a heating medium heating method can be used.
  • Spinning speed is not particularly limited However, it is preferably from 50 to 6,000 m / min, more preferably from 200 to 4,000 m / min.
  • a phenol resin and polyethylene may be melted and kneaded, and this may be directly spun in a molten state, or the phenol resin and polyethylene may be kneaded, pelletized once, and then melted. It may be spun.
  • the curing treatment of the phenolic resin is performed by a known method, for example, a method of curing the phenolic resin with an aldehyde in the presence of a bridge catalyst.
  • the cross-linking catalyst include acidic catalysts such as hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, and p-toluenesulfonic acid, ammonia, hydroxylic acid sodium, sodium hydroxide, potassium hydroxide, and barium hydroxide.
  • Basic catalysts such as sodium carbonate are exemplified.
  • the aldehydes include formaldehyde, paraformaldehyde, and benzaldehyde furfural.
  • reaction conditions during the curing treatment are appropriately selected according to the type, amount used, reaction method, etc. of the crosslinking catalyst and aldehydes.
  • hydrochloric acid is used as the crosslinking catalyst
  • formaldehyde is used as the aldehydes
  • the mixture is treated with an aqueous solution of 5 to 20% by mass of hydrochloric acid and 5 to 20% by mass of formaldehyde at 60 to 110 ° C for 3 to 30 hours.
  • a composite fiber having an average fiber diameter of 5 to 100 m can be obtained.
  • an ultrafine carbon fiber having an average fiber diameter of 0.5 Hm or less can be obtained.
  • the carbonization of the composite fiber is performed by a known method.
  • the inert gas used for carbonization include nitrogen, argon, and the like.
  • the carbonization temperature is preferably in the range of 600 to 1200 ° C, more preferably in the range of 800 to 1000 ° C.
  • the activation of microfine carbon fibers can be performed by subjecting the microfine carbon fibers to a gasification reaction with steam. it can.
  • Examples of the shaped article of the conjugate fiber, the ultrafine carbon fiber, and the ultrafine activated carbon fiber of the present invention include chopped strands, nonwoven fabrics, cloths, felts, papers, and long fibers. Can be manufactured.
  • the method for measuring the physical properties of each fiber in this example is as follows.
  • Photographing was performed using a scanning electron microscope JSM-T22OA manufactured by JEOL Ltd., and the fiber diameter was measured based on the electron micrograph.
  • a phenol resin powder obtained by repeating the same operation three times was mixed with polypropylene (MID measured at 230 ° C and a load of 21.18 N) having a MI of 60 g / 10 min (Idemitsu Petrochemical Co., Ltd.).
  • Y-605 GM was mixed so that the mass ratio was 30:70.
  • 20000 g of this mixed resin was kneaded at 230 ° C. using a kneading PCM 30 co-directional twin screw extruder manufactured by Ikegai Iron Works to obtain a composite resin bellet.
  • the obtained composite resin was melt-spun at a nozzle temperature of 170 ° C.
  • An island-shaped uncured conjugate fiber was obtained.
  • the obtained uncured conjugate fiber was immersed in an aqueous solution of hydrochloric acid-formaldehyde (18% by mass of hydrochloric acid and 10% by mass of formaldehyde) at 96 ° C. for 24 hours to obtain a cured fiber.
  • the cured fiber was carbonized in a nitrogen stream at 600 ° C. for 10 minutes to remove propylene, a sea component, to obtain a phenolic ultrafine carbon fiber.
  • the obtained phenolic ultrafine carbon fiber is
  • Activation treatment was performed at 900 ° C. for 5 minutes to obtain ultrafine activated carbon fibers.
  • the fiber diameter and specific surface area of these ultrafine carbon fibers and ultrafine activated carbon fibers were measured by the above-described methods. Table 1 shows the results.
  • FIG. 1 is an electron micrograph at a magnification of 1000 ⁇
  • FIG. 2 is an electron micrograph at a magnification of 500 ⁇ . From the electron micrographs, it was found that the polypropylene (sea portion) disappeared due to the heat, and a number of ultrafine carbon fibers (average fiber diameter 0.2 urn) extending long in the fiber axis were formed independently. It was confirmed that. By activating the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 220 m 2 / g could be obtained.
  • Example 1 polypropylene having an MI of 60 g / 10 minutes and a polypropylene having an MI of 20 g / 10 minutes measured at 230 ° C. under a load of 2.1.18 N (Idemitsu Petrochemical Co., Ltd.)
  • Y-2000 GV Y-2000 GV
  • the ultra-fine carbon fiber (average fiber diameter 0.2 m) It was confirmed that they were formed individually and independently. Further, by performing the activation treatment of the ultrafine carbon fibers, it was possible to obtain the ultrafine activated carbon fibers having a specific surface area of 250 m 2 / g.
  • Example 1 polypropylene having a MI of 60 g / 10 minutes was used.
  • Example 1 was repeated except that the MI measured at 230 ° C and a load of 21.18 N was changed to polypropylene (Y-900 GV, manufactured by Idemitsu Petrochemical Co., Ltd.) with a weight of 10 g / 10 minutes. Similarly, a cured composite fiber having an average fiber diameter of 30 m was obtained. In the same manner as in Example 1, the obtained composite fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results.
  • Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter: 0.2 m) were formed independently of each other. In addition, by performing the activation treatment of the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 197 m 2 / g was obtained.
  • Example 1 the MI was measured at a density of 0.963 g / cm 3 at 190 ° C. and a load of 21.18 N with a MI of 14 g.
  • the average fiber diameter was changed in the same manner as in Example 1 except that the polyethylene fiber was changed to 1/10 min.
  • Example 2 30 m of cured bicomponent fibers were obtained.
  • the obtained conjugate fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber.
  • Table 1 shows the measurement results. Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter 0.2 m) were formed individually and independently. In addition, by performing the activation treatment of the ultrafine carbon fiber, the specific surface area is 230 An ultra-fine activated carbon fiber of m 2 / g was obtained.
  • Example 1 the polypropylene having MI of 60 g / 10 min was measured at a density of 0.964 g / cm 3 at 190 ° C. and a load of 21. Cured bicomponent fibers having an average fiber diameter of 30 ⁇ were obtained in the same manner as in Example 1 except that the polyethylene fiber was changed to polyethylene (120 YK, manufactured by Idemitsu Petrochemical Co., Ltd.) for 10 minutes. In the same manner as in Example 1, the obtained conjugate fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results.
  • Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter 0.2 m) were formed individually and independently. By activating the ultrafine carbon fibers, ultrafine activated carbon fibers having a specific surface area of 199 m 2 / g could be obtained.
  • Example 1 the polypropylene having MI of 60 g / 10 min was measured at a density of 0.940 g / cm 3 , 190 ° C., and a load of 21.18 N to have a MI of 20 g / 10 N.
  • Cured bicomponent fibers having an average fiber diameter of 30 m were obtained in the same manner as in Example 1 except that the polyethylene was changed to 10-minute polyethylene (074 G, manufactured by Idemitsu Petrochemical Co., Ltd.).
  • the obtained composite fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results.
  • Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter 0.2 m) were formed individually and independently. Further, by performing the activation treatment of the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 270 m 2 / g could be obtained. table 1
  • the phenol resin synthesized in Example 1 was melt-spun at a nozzle temperature of 150 ° C. to obtain a raw phenol fiber. Further, the obtained raw fibers were immersed in an aqueous solution of hydrochloric acid-formaldehyde (18% by mass of hydrochloric acid, 10% by mass of formaldehyde) at 96 ° C. for 24 hours to obtain hardened fibers. Next, the cured fiber was carbonized in a nitrogen stream at 900 ° C. for 30 minutes to obtain a phenolic carbon fiber. The obtained fuynol-based carbon fiber is activated using steam at 900 ° C. for 5 minutes to obtain activated carbon. Fiber was obtained.
  • FIG. 3 is a 1000 ⁇ magnification electron micrograph
  • FIG. 4 is a 500 ⁇ magnification electron micrograph.
  • the obtained fuynol-based carbon fiber has an average fiber diameter of 10 m
  • the activated carbon fiber has a specific surface area of 500 m 2 / g.
  • Example 1 a polypropylene having an MI of 60 g / 10 minutes and a MI of 34 g / 10 minutes measured at 230 ° C. under a load of 21.18 N (Idemitsu Petrochemical Co., Ltd.) In the same manner as in Example 1 except that the cured composite fiber had an average fiber diameter of 30 m. In the same manner as in Example 1, the obtained conjugate fiber was carbonized to obtain a fine carbon fiber, and this carbon fiber was activated to obtain an activated carbon fiber. Table 2 shows the measurement results.
  • FIGS. 5 and 6 show electron micrographs of the obtained ultrafine carbon fiber.
  • FIG. 5 is a photomicrograph of ⁇ 100 magnification and
  • FIG. 6 is a photomicrograph of ⁇ 500 magnification. From the electron micrographs, it was confirmed that the ultrafine carbon fibers (average fiber diameter: 0.2 ⁇ m) were formed individually, but were fused and shrunk. By activating the ultrafine carbon fibers, ultrafine activated carbon fibers having a specific surface area of 2000 m 2 / g could be obtained.
  • Example 1 MI was measured at 60 g / 10 min with a polypropylene at 190 ° C. under a load of 2.18 N. Chemical company, 210 JZ) In the same manner as in Example 1, a composite resin bellet was obtained.
  • the obtained composite resin was melt-spun at a nozzle temperature of 150 ° C.
  • stable extrusion could not be performed, and good spinning could not be performed due to fiber breakage, but sea-island uncured conjugate fibers with an average fiber diameter of 100 m could be obtained.
  • the obtained conjugate fiber was cured and carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 2 shows the measurement results.
  • the ultrafine carbon fibers (average fiber diameter: 0.3 m) were formed individually and independently. Further, by performing the activation treatment of the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 198 m 2 / g could be obtained.
  • Example 1 a polypropylene having an MI of 4.0 g / 10 min measured at 230 ° C. under a load of 21.'18 N was prepared from polypropylene having an MI of 60 g / 10 min.
  • a composite resin velvet was obtained in the same manner as in Example 1 except that Y-400 GP manufactured by Chemical Co., Ltd. was used.
  • the obtained composite resin was melt-spun at a nozzle temperature of 170 ° C.
  • stable extrusion could not be performed, and good spinning could not be performed because the fibers were cut.However, it was not possible to obtain sea-island type uncured composite fibers having an average fiber diameter of 100 ⁇ m.
  • the obtained composite fiber was cured and carbonized to obtain carbon fiber in the same manner as in Example 1, and the carbon fiber was activated to obtain an activated carbon fiber. Table 2 shows the measurement results.
  • an ultrafine carbon fiber having an average fiber diameter of 0.5 Um or less can be easily produced.

Abstract

A resin composition for composite fibers which comprises 10 to 50 wt.% phenolic resin and 90 to 50 wt.% polypropylene having an MI of 10 to 100 g/10 min as measured at 230°C under a load of 21.18 N; or a resin composition for composite fibers which comprises 10 to 50 wt.% phenolic resin and 90 to 50 wt.% polyethylene having a density of 0.940 g/cm3 or higher and an MI of 10 to 30 g/10 min. The resin compositions are for obtaining composite fibers suitable for use as a precursor for ultrafine carbon fibers. By carbonizing the composite fibers obtained, ultrafine carbon fibers having an average fiber diameter of 0.5 µm or smaller can be easily produced.

Description

明 細 書 . 複合繊維用樹脂組成物  Description. Resin composition for composite fiber
技術分野 Technical field
本発明は、 複合繊維用樹脂組成物、 この樹脂組成物からなる複合 繊維、 この複合繊維を炭素化してなる極細炭素繊維、 この炭素繊維 を賦活処理してなる極細活性炭素繊維に、 およびこれらの繊維の賦 形物に関するものである。  The present invention relates to a resin composition for a composite fiber, a composite fiber comprising the resin composition, an ultrafine carbon fiber obtained by carbonizing the composite fiber, an ultrafine activated carbon fiber obtained by activating the carbon fiber, and It relates to a shaped article of fiber.
背景技術 Background art
フユノ一ル樹脂繊維を炭素化して得られるフニノール系炭素繊維 およびこれを賦活処理して得られる活性炭素繊維は、 耐熱性、 耐薬 品性、 導電性等に優れており、 複合材料用充填材、 断熱材、 シール 材、 自動車用キヤニスタ一、 排煙脱硫吸着材、 ダイォキシン吸着材. 電荷二重層キャパシタ用, リチウム電池用, 電荷二重層コ ンデンサ 一用および燃料電池用の電極材料、 セパレ一ターなどの幅広い分野 で利用され、 また、 さらなる利用が期待されている。  Funinol-based carbon fibers obtained by carbonizing FUNOOL resin fibers and activated carbon fibers obtained by activating them have excellent heat resistance, chemical resistance, conductivity, etc. Insulation materials, sealing materials, canisters for automobiles, flue gas desulfurization adsorbents, dioxin adsorbents. Charge double layer capacitors, lithium batteries, charge double layer capacitors, fuel cell electrode materials, separators, etc. It is used in a wide range of fields, and further use is expected.
このよ うな炭素繊維のさ らなる性能向上のための方法のひとつと して、 繊維の極細化がある。 極細炭素繊維の応用展開と して電極材 料を考えた場合、 単位重量あたりの表面積 (比表面積) が大きい極 細炭素繊維をさ らに賦活して極細活性炭素繊維とすることにより、 より性能の高い材料として期待できる。 また、 極細炭素繊維の応用 展開として複合材料用充填材を考えた場合、 単に高剛性の複合材料 を得ることができるばかりではなく、 薄肉成形品に対応可能な高剛 性材料と して応用ができ、 また、 導電経路が多く形成されるので高 導電性材料を得るこ とができる。 One of the methods for further improving the performance of such carbon fibers is to make the fibers extremely fine. When considering electrode materials as an application development of ultrafine carbon fibers, by further activating ultrafine carbon fibers with a large surface area per unit weight (specific surface area) to obtain ultrafine activated carbon fibers, higher performance can be achieved. It can be expected as a material with high quality. In addition, when considering the application of ultrafine carbon fiber as a filler for composite materials, not only can a high-rigidity composite material be obtained, but also as a high-rigidity material that can be used for thin-walled molded products. And high conductive paths are formed. A conductive material can be obtained.
フュノール樹脂極細炭素繊維を製造するためには、 極細のフェノ ール樹脂繊維を作る必要がある。 従来の溶融紡糸の技術を用いて極 細のフユノール樹脂繊維を作る方法と しては、 紡糸口金における樹 脂の吐出口を小径にし、 紡糸速度を上げてフユノール樹脂繊維を溶 融紡糸する方法、 フェノール樹脂と他の樹脂とを特殊な口金から押 出して海島型複合繊維を溶融紡糸し、 その海成分の樹脂のみを機械 的に除去するか、 または溶剤等を用いて除去し、 島成分のフユノー ル樹脂のみを取り出す方法などが挙げられる。 そしてこれらの前駆 体繊維を炭素化することによ り極細の炭素繊維が製造される。  In order to produce ultra fine carbon fiber of fenol resin, it is necessary to make ultra fine phenol resin fiber. Conventional methods for producing ultrafine funor resin fibers using melt spinning techniques include a method in which the diameter of the resin discharge port in the spinneret is reduced, and the spinning speed is increased to melt spin the fuynol resin fibers. The phenolic resin and other resin are extruded from a special die to melt spin the sea-island composite fiber, and only the resin of the sea component is removed mechanically or by using a solvent or the like to remove the island component. For example, there is a method of taking out only the phenol resin. Then, these precursor fibers are carbonized to produce ultrafine carbon fibers.
しかしながら、 フヱノール樹脂繊維の原料となるフヱノール樹脂 は、 非晶性樹脂であり、 また重合度が低いため、 紡糸は難しい。 ま た、 得られるフニノール樹脂繊維は、 強度、 伸度が不十分であり、 極めて脆いという問題を有していた。 そのため、 小径の紡糸口金を 用い、 紡糸速度を上げる方法では、 極端に生産性が落ちてしまう と いう問題があった。 また、 吐出されたフヱノール樹脂が紡糸口金に 非常に近い位置で冷却固化されてしまうため、 紡糸時の延伸効果が ほとんど期待できず、 その繊維径は 1 2 m程度が限界であった。 また、 フユ ノール樹脂が脆いため、 紡糸後に延伸処理ができず、 延 伸によるフユノール樹脂繊維の細繊化は事実上不可能であった。 ま た、 特殊な口金を使用する場合には、 口金の形状が極めて複雑にな るため、 生産性が格段に落ち、 また、 繊維径 1 0 以下のフヱ ノ ール樹脂繊維を得ることは不可能であった。 さ らに、 海成分を溶剤 等で除去する方法の場合、 多量の溶剤を必要とするため、 作業環境 を著しく悪化させるという問題があつた。  However, phenol resin, which is a raw material of phenol resin fibers, is an amorphous resin and has a low degree of polymerization, so that spinning is difficult. Further, the obtained fininol resin fiber had problems that strength and elongation were insufficient and that it was extremely brittle. For this reason, there is a problem that productivity is extremely reduced in a method of increasing the spinning speed by using a small-diameter spinneret. Also, since the discharged phenol resin is cooled and solidified at a position very close to the spinneret, the drawing effect during spinning can hardly be expected, and the fiber diameter was limited to about 12 m. In addition, since the phenolic resin was brittle, it was impossible to perform a stretching treatment after spinning, and it was practically impossible to make the phenolic resin fiber finer by elongation. In addition, when a special die is used, the shape of the die becomes extremely complicated, so that productivity is remarkably reduced, and it is not possible to obtain phenol resin fibers having a fiber diameter of 10 or less. It was impossible. In addition, the method of removing sea components with a solvent or the like requires a large amount of solvent, which has a problem that the working environment is significantly deteriorated.
フュ ノール系極細炭素繊維を得る方法は、 特開平 2 0 0 1 — 7 3 2 2 6号公報などにおいて提案されているが、 単にフヱノ一ル樹脂 とポリエチレン樹脂との複合化を行なつた場合、 最終的に得られる 極細炭素繊維が縮れてしまったり、 繊維同士が融着してしまう とい う問題がある。 発明の開示 A method for obtaining a phenolic ultrafine carbon fiber is disclosed in Japanese Unexamined Patent Publication No. Although it is proposed in Japanese Patent Publication No. 226, etc., when simply combining a phenolic resin and a polyethylene resin, the ultrafine carbon fiber finally obtained shrinks or the fibers are fused together. There is a problem of doing so. Disclosure of the invention
本発明は、 上記事情に鑑みなされたもので、 極細炭素繊維の前駆 体と して好適な複合繊維を得るための樹脂組成物、 この複合繊維を 炭素化することによ り得られる極細炭素繊維、 この炭素繊維を賦活 するこ とによ り得られる極細活性炭素繊維、 およびこれらの繊維を 賦形してなる賦形物を提供することを目的とするものである。  The present invention has been made in view of the above circumstances, and provides a resin composition for obtaining a conjugate fiber suitable as a precursor of an ultrafine carbon fiber, and an ultrafine carbon fiber obtained by carbonizing the conjugate fiber. It is an object of the present invention to provide an ultrafine activated carbon fiber obtained by activating this carbon fiber, and a shaped article obtained by shaping these fibers.
本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果 フエノール樹脂と、 特定のポリプロピレンまたは特定のポリエチレ ンとを特定の割合で配合した樹脂樹脂組成物は、 複合繊維用樹脂組 成物と して好適であり、 この樹脂組成物を紡糸することによる得ら れる複合繊維繊維は、 極細炭素繊維の前駆体として好適であり、 こ の複合繊維を炭素化することにより平均繊維径が 0. 5 以下の極 細炭素繊維が得られ、 この極細炭素繊維を賦活処理することによ り 極細活性炭素繊維が得られることを見出した。 本発明はかかる知見 に基づいて完成したものである。  The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, a resin resin composition in which a phenolic resin and a specific polypropylene or a specific polyethylene are mixed at a specific ratio is a resin set for a composite fiber. The composite fiber obtained by spinning the resin composition is suitable as a precursor of the ultrafine carbon fiber, and the average fiber diameter is obtained by carbonizing the composite fiber. It was found that ultrafine carbon fibers having an average particle diameter of 0.5 or less were obtained, and by activating this ultrafine carbon fiber, an ultrafine activated carbon fiber was obtained. The present invention has been completed based on such findings.
すなわち、 本発明は、 フエノール樹脂 1 0 〜 5 0質量%および温 度 2 3 0 ° (:、 荷重 2 1. 1 8 Nの条件で測定した M I (メルトイ ンデ ッ クス) が 1 0 〜 1 0 0 g 1 0分のポリプロピレン 9 0〜 5 0質 量%からなる複合繊維用樹脂組成物、 フェ ノール樹脂 1 0〜 5 0質 量%および密度 0. 9 4 0 g / c m 3 以上、 温度 1 9 0 °C、 荷重 2 1. 1 8 Nの条件で測定した M I (メル トイ ンデッ クス) が 1 0 〜 3 0 g / 1 0分のポリエチレン 9 0 〜 5 0質量%からなる複合繊維 用樹脂組成物、 これらの樹脂組成物を紡糸することによ り得られる 平均繊維径が 5 〜 1 0 0 mの複合繊維、 この複合繊維を炭素化す ることによ り得られる平均繊維径が 0. 5 u m以下の極細炭素繊維、 この極細炭素繊維を賦活処理することによ り得られる極細活性炭素 繊維を提供するものである。 また、 本発明は、 これらの繊維を賦形 してなる賦形物をも提供するものである。 図面の簡単な説明 That is, in the present invention, the MI (melt index) measured under the conditions of 10 to 50% by mass of the phenolic resin and a temperature of 230 ° (: a load of 21.18 N) is 10 to 1%. 0 0 g 1 0 minute polypropylene 9 0-5 0 consist mass% conjugate fiber resin composition, 1 0-5 0 mass% phenol resin and density 0. 9 4 0 g / cm 3 or more, the temperature MI (mel index) measured under the condition of 190 ° C and load of 2. Resin composition for composite fiber consisting of 90 to 50% by mass of polyethylene of 30 g / 10 minutes, having an average fiber diameter of 5 to 100 m obtained by spinning these resin compositions. Provided are a conjugate fiber, an ultrafine carbon fiber having an average fiber diameter of 0.5 μm or less obtained by carbonizing the conjugate fiber, and an ultrafine activated carbon fiber obtained by activating this ultrafine carbon fiber. Is what you do. The present invention also provides a shaped article obtained by shaping these fibers. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 実施例 1 におけるフユノール系極細炭素繊維の集合体の Fig. 1 shows the aggregate of the fuynol-based ultrafine carbon fibers in Example 1.
1 0 0 0倍の電子顕微鏡写真である。 It is a 1000 times electron microscope photograph.
図 1 は、 実施例 1 におけるフユノール系極細炭素繊維の集合体の Fig. 1 shows the aggregate of the fuynol-based ultrafine carbon fibers in Example 1.
5 0 0 0倍の電子顕微鏡写真である。 It is a 5000 times electron microscope photograph.
図 3 は、 比較例 1 におけるフユ ノール系炭素繊維の集合体の Figure 3 shows the phenolic carbon fiber aggregate in Comparative Example 1.
1 0 0 0倍の電子顕微鏡写真である。 It is a 1000 times electron microscope photograph.
図 4 は、 比較例 1 におけるフユ ノール系炭素繊維の集合体の Figure 4 shows the aggregate of phenolic carbon fibers in Comparative Example 1.
5 0 0 0倍の電子顕微鏡写真である。 It is a 5000 times electron microscope photograph.
図 5 は、 比較例 2 におけるフエノール系極細炭素繊維の集合体の Figure 5 shows the aggregate of the phenolic microfine carbon fibers in Comparative Example 2.
1 0 0 0倍の電子顕微鏡写真である。 It is a 1000 times electron microscope photograph.
図 6 は、 比較例 2 におけるフニノール系極細炭素繊維の集合体の Figure 6 shows the aggregate of the fininol-based ultrafine carbon fibers in Comparative Example 2.
5 0 0 0倍の電子顕微鏡写真である 発明を実施するための最良の形態 It is an electron micrograph at a magnification of 500 times. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。 本発明で用いるフニノール樹脂 とは、 フニノール類とアルデヒ ド類とを反応触媒の存在下に縮合重 合反応させて得られるものである。 フエノール類と しては、 例えば フエ ノール、 o _ク レゾ一ル、 m—ク レゾール、 p —ク レゾール、 ビスフエ ノ一ルー A、 2 , 3 —キシレノ一ル、 3 , 5 —キシレノ一 ル、 p —ターシャ リ ブチルフヱ ノール、 レゾルシノール等が挙げら れる。 アルデヒ ド類と しては、 例えば、 ホルムァルデヒ ド、 パラホ ルムアルデヒ ド、 へキサメチレンテ トラ ミ ン、 フルフラール、 ベン ズアルデヒ ド、 サリチルァルデヒ ド等が挙げられる。 Hereinafter, the present invention will be described in detail. The funinol resin used in the present invention is obtained by subjecting a funinol and an aldehyde to a condensation polymerization reaction in the presence of a reaction catalyst. As phenols, for example, Phenol, o_cresol, m-cresol, p-cresol, bisphenol A, 2,3—xylenol, 3,5—xylenol, p—tertiary butylphenol, resorcinol And the like. Examples of the aldehydes include formaldehyde, paraformaldehyde, hexamethylene tetramine, furfural, benzaldehyde, and salicylaldehyde.
アルデヒ ド類とフエノール類のモル比は、 特に限定はされないが 好ま しく は 0. 6 : 1 〜0. 8 6 : 1 である。 反応触媒と しては、 例え ば、 塩酸、 硫酸等の無機酸、 シユウ酸、 パラ トルエンスルホン酸等 の有機酸、 クェン酸、 酒石酸等のォキシカルボン酸、 塩化亜鉛、 酢 酸亜鉛等の亜鉛化合物等が挙げられる。  The molar ratio between the aldehydes and the phenols is not particularly limited, but is preferably 0.6: 1 to 0.886: 1. Examples of the reaction catalyst include inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as oxalic acid and p-toluenesulfonic acid, oxycarboxylic acids such as citric acid and tartaric acid, and zinc compounds such as zinc chloride and zinc acetate. Is mentioned.
本発明で用いるフエ ノール樹脂は、 線状分子のものに限定されず 一部枝状分子のものでもよい。 また、 その組成は、 単一のフヱノ一 ル樹脂からなる ものでも、 2成分以上を任意の割合で混合したもの でもよい。 フヱ ノール樹脂の分子量も特に限定はされないが、 溶融 紡糸に適切な温度範囲で可融であり、 溶融紡糸に適切な粘度範囲を 有するためには、 その平均分子量は 5 0 0〜 5 0, 0 0 0 の範囲にあ ることが好ま しい。 フヱノール樹脂の軟化点は特に限定されるもの ではないが、 好ま しく は 9 0 °C以上であ り、 特に好ま しく は 1 2 0 〜 1 3 0 °Cである。 本発明においては、 軟化点が 9 0 °C以上のノボ ラッ ク型フエ ノール樹脂が好ま しい。  The phenol resin used in the present invention is not limited to a linear molecule but may be a partially branched molecule. The composition may be a single phenol resin or a mixture of two or more components at an arbitrary ratio. The molecular weight of the phenol resin is also not particularly limited, but in order to be fusible in a temperature range appropriate for melt spinning and to have a viscosity range appropriate for melt spinning, the average molecular weight is from 500 to 50, It is preferably in the range of 0 0 0. The softening point of the phenol resin is not particularly limited, but is preferably 90 ° C. or more, and particularly preferably 120 to 130 ° C. In the present invention, a novolac type phenol resin having a softening point of 90 ° C. or more is preferable.
本発明で用いるポリプロ ピレンと しては、 ホモボリプロ ピレン, ブロッ クポリプロ ピレンおよびランダムポリプロ ピレンが挙げられ る。  Examples of the polypropylene used in the present invention include homopolypropylene, block polypropylene and random polypropylene.
ここで、 ホモポリプロ ピレンとはプロ ピレン単独を重合した樹脂 であ り、 ブロッ クポリプロ ピレンおよびラ ンダムポリ プロ ピレンは プロピレンと他のコモノマーとの共重合体であ り、 他のコモノマー と しては、 エチレン、 炭素数 4 〜 6 のォレフイ ン ( 1 ーブテン, 1 —ペンテン, 1 —へキセン等) を使用することができる。 Here, the homopolypropylene is a resin obtained by polymerizing propylene alone, and the block polypropylene and the random polypropylene are It is a copolymer of propylene and another comonomer. As the other comonomer, use ethylene or C4 to C6 olefin (1-butene, 1-pentene, 1-hexene, etc.) Can be.
また、 ポリェチレンと しては、 高圧法低密度ポリェチレン、 中密 度ポリエチレン、 高密度ポリエチレン、 直鎖状低密度ポリエチレン などのェチレンの単独重合体またはエチレンと α—ォレフィ ンとの 共重合体 ; エチレン '酢酸ビニル共重合体などのエチレンと他のビ 二ル系単量体との共重合体等が挙げられる。  Examples of polyethylene include high-pressure low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other homopolymers of ethylene or copolymers of ethylene and α-olefin; 'Copolymers of ethylene with other vinyl monomers, such as vinyl acetate copolymers, and the like.
エチレンと共重合される α—ォレフィ ンと しては、 例えば、 プロ ピレン、 1 ーブテン、 4 ーメチル一 1 —ペンテン、 1 一へキセン、 1 ーォクテンなどが挙げられる。 他のビニル系単量体と しては、 例 えば、 酢酸ビュル等のビュルエステル ; (メ タ) アク リ ル酸、 (メ 夕) アク リ ル酸メチル、 (メ タ) アク リル酸ェチル、 (メ タ) ァク リ ル酸 η—ブチル等の (メ タ) アク リル酸およびそのアルキルエス テルなどが挙げられる。  Examples of the α-olefin copolymerized with ethylene include propylene, 1-butene, 4-methyl-11-pentene, 11-hexene, and 1-octene. Other vinyl monomers include, for example, butyl esters such as butyl acetate; (meth) acrylic acid, (methyl) methyl acrylate, (meth) ethyl acrylate, Examples include (meth) acrylic acid such as η-butyl (meth) acrylate and its alkyl ester.
本発明においては、 温度 2 3 0 ° (:、 荷重 2 1. 1 8 Νの条件で測定 した Μ I (メル トイ ンデッ クス) が 1 0 〜 1 0 0 g / 1 0分のポリ プロピレン、 密度 9 4 0以上、 温度 1 9 0 °C、 荷重 2 1. 1 8 Nの 条件で測定した M I (メル トイ ンデッ クス) が 1 0 〜 3 0 g / 1 0 分のポリエチレンを用いる。  In the present invention, the ΜI (mel to index) measured under the condition of a temperature of 230 ° (: load 21.18Ν) is 10 to 100 g / 10 min. Use polyethylene with an MI (mel index) of 10 to 30 g / 10 minutes measured under conditions of 940 or more, temperature of 190 ° C, and load of 2.1.8 N.
ポリプロ ピレンの M I が 1 0 g / 1 0分未満であると、 後述する 複合繊維を作製する際に、 海島構造におけるフエ ノール樹脂の島が 良好に形成されないため、 紡糸性などが著しく低下する。 また、 M I が 1 0 0 g / 1 0分を超えると、 フヱ ノール樹脂との海島構造が 不均一となるため、 紡糸性が著しく低下し、 安定した繊維化ができ ない。 また、 ポリエチレンを用いる場合、 その密度が 0. 9 4 0 g / c m 未満であると、 複合繊維を炭素化する工程において炭素繊維が縮れ てしまう。 ポリエチレンの密度は、 好ま しく は 0. 9 4 0〜0. 9 6 8 g / c m 3 である。 ポリエチレンの M I が 1 0 g / 0分未満であ ると、 複合繊維を紡 する際に繊維が切れてしまい、 良好な紡糸を 行なう ことが困難となる。 また、 ポリエチレンの M I が 3 0 g / 1 0分を超えると、 フヱノール樹脂とポリエチレンの相分離が発生 するため、 繊維が切れてしまい、 良好な紡糸を行なう ことが困難と なる。 If the MI of the polypropylene is less than 10 g / 10 minutes, the phenolic resin islands in the sea-island structure will not be formed well when producing a conjugate fiber described later, and the spinnability and the like will be significantly reduced. When the MI exceeds 100 g / 10 minutes, the sea-island structure with the phenol resin becomes non-uniform, so that the spinnability is remarkably reduced and stable fiber formation cannot be performed. In the case of using polyethylene, if the density is less than 0.940 g / cm, the carbon fibers are shrunk in the step of carbonizing the composite fibers. Density polyethylene, the preferred properly a 0. 9 4 0~0. 9 6 8 g / cm 3. If the MI of the polyethylene is less than 10 g / 0 min, the fiber will be cut when spinning the conjugate fiber, making it difficult to perform good spinning. If the MI of the polyethylene exceeds 30 g / 10 minutes, phase separation occurs between the phenol resin and the polyethylene, so that the fibers are cut and it becomes difficult to perform good spinning.
本発明において、 フエノール樹脂と、 ポリプロピレンまたはポリ ェチレンの混合比率は、 フヱノール樹脂 1 0〜 5 0質量%、 ポリプ ロピレンまたはポリエチレンが 9 0〜 5 0質量%であるが、 好ま し く はフヱ ノール樹脂が 1 0〜 3 0質量0 /0、 ポリプロピレンまたはポ リェチレンが 9 0〜 7 0質量%である。 フェノール樹脂が 1 0質量 %未満では、 十分なフニノール系極細炭素繊維得られず、 フユ ノー ル樹脂が 5 0質量%を超えると、 良好な海島構造を得ることができ なく なるため、 紡糸性が低下したり、 炭素化によ り得られる炭素繊 維の構造が不均一となる。 In the present invention, the mixing ratio of the phenol resin to the polypropylene or the polyethylene is 10 to 50% by mass of the phenol resin and 90 to 50% by mass of the propylene resin or the polyethylene. resin 1 0-3 0 weight 0/0, polypropylene or port Ryechiren is 9 0-7 0% by weight. If the phenolic resin content is less than 10% by mass, sufficient fininol-based ultrafine carbon fibers cannot be obtained, and if the phenolic resin content exceeds 50% by mass, a good sea-island structure cannot be obtained. Deterioration or the structure of carbon fiber obtained by carbonization becomes uneven.
本発明の複合繊維用樹脂組成物には、 必要に応じて各種添加剤を 添加してもよい。 添加剤と しては、 酸化防止剤、 紫外線吸収剤、 顔 料、 染料などが挙げられる。  Various additives may be added to the resin composition for composite fibers of the present invention as needed. Examples of the additive include an antioxidant, an ultraviolet absorber, a pigment, and a dye.
本発明の複合繊維用樹脂組成物は、 フユノール樹脂と、 ポリプロ ピレンまたはポリエチレンとを公知の方法によ り、 混合し、 混練す ることによ り得ることができる。 混練装置と しては、 公知のものを 用いるこ とができ、 例えば、 押出機型混練機、 ミキシングロール、 バンバリ一ミキサー、 高速二軸連続ミキサーなどが挙げられる。 フ エノ一ル樹脂と、 ポリプロピレンまたはポリエチレンの混練時間は . 樹脂の量ゃフヱ ノール樹脂と、 ポリプロ ピレンまたはポリエチレン の混合比率、 島成分であるフエノール樹脂の目的とする繊維径によ つて適宜選択され、 特に限定はされない。 The resin composition for a conjugate fiber of the present invention can be obtained by mixing and kneading a fuñol resin with polypropylene or polyethylene by a known method. As the kneading apparatus, a known kneading apparatus can be used, and examples thereof include an extruder-type kneading machine, a mixing roll, a Banbury mixer, and a high-speed twin-screw continuous mixer. H The kneading time of the phenolic resin and polypropylene or polyethylene is appropriately selected depending on the amount of the resin, the mixing ratio of the phenolic resin and the polypropylene or polyethylene, and the desired fiber diameter of the phenolic resin as an island component. However, there is no particular limitation.
フヱノール樹脂と、 ポリプロピレンまたはポリエチレンの混練温 度は、 特に限定はされないが、 好ましく は 1 8 0 〜 2 8 0 °Cの範囲 であり、 よ り好ましく は 2 0 0 〜 2 6 0 °Cの範囲である。  The kneading temperature of the phenol resin and the polypropylene or polyethylene is not particularly limited, but is preferably in the range of 180 to 280 ° C, more preferably in the range of 200 to 260 ° C. It is.
このよう にして得られた樹脂組成物を溶融状態で紡糸口金から押 出して溶融紡糸することによ り、 海成分がポリオレフィ ン樹脂であ り、 島成分がフユノール樹脂である、 海島型の複合繊維を得ること ができる。 さ らに、 島成分のフヱノール樹脂を硬化処理することに より、 硬化処理された複合繊維を得ることができる。 ついで、 この 硬化処理された複合繊維を、 不活性雰囲気下で炭素化し、 フユノ一 ル系極細炭素繊維を得る。 この極細炭素繊維を賦活処理することに より、 極細活性炭素化繊維を得ることができる。 本発明において、 フュノール系極細炭素繊維は、 複合繊維を単に炭素化することによ り得ることができるので、 作業環境も著しく改善され、 容易に製造 することができる。  The resin composition thus obtained is extruded in a molten state from a spinneret and melt-spun to form a sea-island composite in which the sea component is a polyolefin resin and the island component is a fuyunol resin. Fiber can be obtained. Further, by subjecting the island component phenol resin to a curing treatment, a cured composite fiber can be obtained. Next, the cured composite fiber is carbonized under an inert atmosphere to obtain a fluorinated ultrafine carbon fiber. By activating this ultrafine carbon fiber, an ultrafine activated carbon fiber can be obtained. In the present invention, the finol-based ultrafine carbon fiber can be obtained by simply carbonizing the conjugate fiber, so that the working environment is remarkably improved and the finol-based ultrafine carbon fiber can be easily manufactured.
溶融紡糸時の温度は、 特に限定はされないが、 好ましく は 1 5 0 〜 3 0 0 °Cの範囲であり、 よ り好ましく は 1 6 0 〜 2 5 0 °Cの範囲 である。 紡糸口金の孔径は、 目的とする複合繊維の繊維径によって 適宜選択され、 特に限定はされないが、 好ましく は 0. 1 〜5. 0 m m よ り好ましく は 0. 2 〜4. 0 m mである。 溶融方法としては、 公知の 方法を用いることができ、 例えば、 押出機方式、 メルタ一方式など が挙げられる。 加熱方法も、 電熱方式、 蒸気加熱方式、 熱媒加熱方 式のいずれの方法も可能である。 紡糸速度は、 特に限定はされない が、 好ま しく は 5 0〜6, 0 0 0 m /分、 よ り好ましく は 2 0 0〜 4, 0 0 0 m /分である。 溶融紡糸は、 フヱ ノール樹脂とポリエチレ ンを溶融混練し、 これを溶融状態のまま直接紡糸してもよく、 フユ ノール樹脂とポリエチレンを混練し、 一旦ペレツ ト化した後、 ペレ ッ ト を溶融紡糸してもよい。 The temperature during melt spinning is not particularly limited, but is preferably in the range of 150 to 300 ° C, more preferably in the range of 160 to 250 ° C. The pore diameter of the spinneret is appropriately selected depending on the fiber diameter of the intended conjugate fiber, and is not particularly limited, but is preferably from 0.1 to 5.0 mm, more preferably from 0.2 to 4.0 mm. As the melting method, a known method can be used, and examples thereof include an extruder method and a melter method. As the heating method, any of an electric heating method, a steam heating method, and a heating medium heating method can be used. Spinning speed is not particularly limited However, it is preferably from 50 to 6,000 m / min, more preferably from 200 to 4,000 m / min. In melt spinning, a phenol resin and polyethylene may be melted and kneaded, and this may be directly spun in a molten state, or the phenol resin and polyethylene may be kneaded, pelletized once, and then melted. It may be spun.
フユノール樹脂の硬化処理は、 公知の方法で行われ、 例えば、 架 橋触媒の存在下、 アルデヒ ド類でフエノール樹脂を硬化させる方法 などが挙げられる。 架橋触媒と しては、 塩酸、 硫酸、 硝酸、 シユウ 酸、 p — トルエンスルホン酸等の酸性触媒、 アンモニア、 水酸化力 ルシゥム、 水酸化ナト リ ウム、 水酸化カ リ ウム、 水酸化バリ ウム、 炭酸ナト リ ゥム等の塩基性触媒が挙げられる。 アルデヒ ド類と して は、 ホルムァルデヒ ド、 パラホルムアルデヒ ド、 ベンズアルデヒ ド フルフラール等が挙げられる。  The curing treatment of the phenolic resin is performed by a known method, for example, a method of curing the phenolic resin with an aldehyde in the presence of a bridge catalyst. Examples of the cross-linking catalyst include acidic catalysts such as hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, and p-toluenesulfonic acid, ammonia, hydroxylic acid sodium, sodium hydroxide, potassium hydroxide, and barium hydroxide. Basic catalysts such as sodium carbonate are exemplified. Examples of the aldehydes include formaldehyde, paraformaldehyde, and benzaldehyde furfural.
硬化処理時における反応条件は、 架橋触媒およびアルデヒ ド類の 種類、 使用量、 反応方法等によ り適宜選択され、 例えば、 架橋触媒 と して塩酸、 アルデヒ ド類と してホルムアルデヒ ドを用いる場合、 塩酸 5〜 2 0質量%、 ホルムアルデヒ ド 5〜 2 0質量%の水溶液を 用い、 6 0〜 1 1 0 °Cで、 3〜 3 0時間処理する。  The reaction conditions during the curing treatment are appropriately selected according to the type, amount used, reaction method, etc. of the crosslinking catalyst and aldehydes.For example, when hydrochloric acid is used as the crosslinking catalyst and formaldehyde is used as the aldehydes The mixture is treated with an aqueous solution of 5 to 20% by mass of hydrochloric acid and 5 to 20% by mass of formaldehyde at 60 to 110 ° C for 3 to 30 hours.
このよ う にして、 平均繊維径が 5〜 1 0 0 mの複合繊維を得る ことができる。 このような複合繊維を炭素化することにより、 平均 繊維径が 0. 5 H m以下の極細炭素繊維を得ることができる。  In this way, a composite fiber having an average fiber diameter of 5 to 100 m can be obtained. By carbonizing such a composite fiber, an ultrafine carbon fiber having an average fiber diameter of 0.5 Hm or less can be obtained.
複合繊維の炭素化は、 公知の方法で行われる。 炭素化で使用され る不活性ガスと しては、 窒素、 アルゴン等が挙げられる。 炭素化の 温度は、 好ましくは 6 0 0〜 1, 2 0 0 °Cの範囲、 より好ましく は 8 0 0〜1, 0 0 0 °Cの範囲である。 極細炭素繊維の賦活は、 極細炭 素繊維を水蒸気によるガス化反応に供することにより行なう ことが できる。 The carbonization of the composite fiber is performed by a known method. Examples of the inert gas used for carbonization include nitrogen, argon, and the like. The carbonization temperature is preferably in the range of 600 to 1200 ° C, more preferably in the range of 800 to 1000 ° C. The activation of microfine carbon fibers can be performed by subjecting the microfine carbon fibers to a gasification reaction with steam. it can.
本発明の複合繊維、 極細炭素繊維および極細活性炭素繊維の賦形 物と しては、 チョ ップドス トラン ド、 不織布、 クロス、 フェルト、 ペーパー、 長繊維などを挙げることができ、 これらは公知の方法で 製造することができる。  Examples of the shaped article of the conjugate fiber, the ultrafine carbon fiber, and the ultrafine activated carbon fiber of the present invention include chopped strands, nonwoven fabrics, cloths, felts, papers, and long fibers. Can be manufactured.
次に、 本発明を実施例によ り さ らに詳細に説明するが、 本発明は これらの例によってなんら限定されるものではない。 本実施例にお ける各繊維の物性の測定方法は以下の通りである。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The method for measuring the physical properties of each fiber in this example is as follows.
( 1 ) 繊維径  (1) Fiber diameter
日本電子社製の走査型電子顕微鏡 J S M - T 2 2 O Aを使用して 写真撮影を行い電子顕微鏡写真に基づいて繊維径を測定した。  Photographing was performed using a scanning electron microscope JSM-T22OA manufactured by JEOL Ltd., and the fiber diameter was measured based on the electron micrograph.
( 2 ) 比表面積  (2) Specific surface area
日本ベル社製のベルソープ 8 S Aを使用して測定した。  The measurement was performed using Bell Soap 8SA manufactured by Bell Japan.
[実施例 1 ]  [Example 1]
フヱノール l, 0 0 0 g、 3 7質量%ホルマリ ン 7 3 3. 2 g、 シュ ゥ酸 5 gを攪捽機、 還流冷却器を備えた反応容器に仕込み、 4 0分 間で 1 0 0 °Cに昇温し、 その後この温度を 4時間保持した。 2 0 0 °Cまで加熱して減圧脱水濃縮した後、 冷却することにより、 軟化点 1 2 5 °Cのノボラッ ク型フエノール樹脂 1 0 1 0 gを得た。 同様の 操作を 3回繰り返して得たフヱノール樹脂の粉末と、 2 3 0 °C、 荷 重 2 1. 1 8 Nにおいて測定した M I が 6 0 g / 1 0分のポリプロピ レン (出光石油化学社製、 Y— 6 0 0 5 G M ) を質量比で 3 0 : 7 0 となるように混合した。 この混合樹脂 2 0 0 0 gを、 池貝鉄工 製の混練 P C M 3 0同方向二軸押出し機を用いて 2 3 0 °Cで混練し. 複合樹脂べレッ トを得た。  1,00 g of phenol, 373.2 g of 37% by mass formalin and 5 g of oxalic acid were charged into a reaction vessel equipped with a stirrer and a reflux condenser, and the reaction was carried out for 100 minutes in 40 minutes. ° C, and then kept at this temperature for 4 hours. After heating to 200 ° C. and dehydrating and concentrating under reduced pressure, 110 g of a novolac phenol resin having a softening point of 125 ° C. was obtained by cooling. A phenol resin powder obtained by repeating the same operation three times was mixed with polypropylene (MID measured at 230 ° C and a load of 21.18 N) having a MI of 60 g / 10 min (Idemitsu Petrochemical Co., Ltd.). Y-605 GM) was mixed so that the mass ratio was 30:70. 20000 g of this mixed resin was kneaded at 230 ° C. using a kneading PCM 30 co-directional twin screw extruder manufactured by Ikegai Iron Works to obtain a composite resin bellet.
次に、 得られた複合樹脂をノズル温度 1 7 0 °Cで溶融紡糸し、 海 島型の未硬化複合繊維を得た。 得られた未硬化複合繊維を塩酸ーホ ルムアルデヒ ド水溶液 (塩酸 1 8質量%、 ホルムアルデヒ ド 1 0質 量%) 中に 9 6 °Cで、 2 4時間浸潰し、 硬化繊維を得た。 次に、 こ の硬化繊維を、 窒素気流中、 6 0 0 °C、 1 0分の条件で炭素化し、 海成分のポリプロ ピレンを除去して、 フエ ノール系極細炭素繊維を 得た。 得られたフエ ノール系極細炭素繊維を、 水蒸気を用いて Next, the obtained composite resin was melt-spun at a nozzle temperature of 170 ° C. An island-shaped uncured conjugate fiber was obtained. The obtained uncured conjugate fiber was immersed in an aqueous solution of hydrochloric acid-formaldehyde (18% by mass of hydrochloric acid and 10% by mass of formaldehyde) at 96 ° C. for 24 hours to obtain a cured fiber. Next, the cured fiber was carbonized in a nitrogen stream at 600 ° C. for 10 minutes to remove propylene, a sea component, to obtain a phenolic ultrafine carbon fiber. The obtained phenolic ultrafine carbon fiber is
9 0 0 °C、 5分の条件で賦活処理し、 極細活性炭素繊維を得た。 こ れらの極細炭素繊維および極細活性炭素繊維について、 上記の方法 によ り繊維径および比表面積を測定した。 結果を表 1 に示す。  Activation treatment was performed at 900 ° C. for 5 minutes to obtain ultrafine activated carbon fibers. The fiber diameter and specific surface area of these ultrafine carbon fibers and ultrafine activated carbon fibers were measured by the above-described methods. Table 1 shows the results.
得られたフェノール系極細炭素繊維の電子顕微鏡写真を図 1 およ ぴ図 2 に示す。 図 1 は 1 0 0 0倍の電子顕微鏡写真、 図 2は 5 0 0 0 倍の電子顕微鏡写真である。 これの電子顕微鏡写真から、 ポリプロ ピレン (海部分) が熱によって消失し、 繊維軸方向に長く延びる多 数の極細炭素繊維 (平均繊維径 0. 2 u rn ) が個々独立した状態で形 成されていることが確認された。 また、 極細炭素繊維の賦活処理を 行なう こ とによ り、 比表面積が 2 0 2 0 m 2 / gの極細活性炭素繊 維を得ることができた。 Figures 1 and 2 show electron micrographs of the obtained phenolic ultrafine carbon fiber. FIG. 1 is an electron micrograph at a magnification of 1000 ×, and FIG. 2 is an electron micrograph at a magnification of 500 ×. From the electron micrographs, it was found that the polypropylene (sea portion) disappeared due to the heat, and a number of ultrafine carbon fibers (average fiber diameter 0.2 urn) extending long in the fiber axis were formed independently. It was confirmed that. By activating the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 220 m 2 / g could be obtained.
[実施例 2 ]  [Example 2]
実施例 1 において、 M I が 6 0 g / 1 0分のポリプロピレンを、 2 3 0 °C . 荷重 2 1. 1 8 Nにおいて測定した M I が 2 0 g / 1 0分 のポリプロピレン (出光石油化学社製、 Y— 2 0 0 0 G V ) に変え た以外は実施例 1 と同様にして、 平均繊維径が 3 0 mの硬化複合 繊維を得た。 実施例 1 と同様にして、 得られた複合繊維を炭素化し て炭素繊維を得、 この炭素繊維を賦活処理して活性炭素繊維を得た。 これらについての測定結果を表 1 に示す。  In Example 1, polypropylene having an MI of 60 g / 10 minutes and a polypropylene having an MI of 20 g / 10 minutes measured at 230 ° C. under a load of 2.1.18 N (Idemitsu Petrochemical Co., Ltd.) In the same manner as in Example 1 except that Y-2000 GV) was used to obtain a cured composite fiber having an average fiber diameter of 30 m. In the same manner as in Example 1, the obtained composite fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results.
電子顕微鏡写真によ り、 極細炭素繊維 (平均繊維径 0. 2 m ) が 個々に独立した状態で形成されていることが確認された。 また、 極 細炭素繊維の賦活処理を行なう ことによ り、 比表面積が 2 0 5 0 m 2 / gの極細活性炭素繊維を得ることができた。 According to the electron micrograph, the ultra-fine carbon fiber (average fiber diameter 0.2 m) It was confirmed that they were formed individually and independently. Further, by performing the activation treatment of the ultrafine carbon fibers, it was possible to obtain the ultrafine activated carbon fibers having a specific surface area of 250 m 2 / g.
[実施例 3 ]  [Example 3]
実施例 1 において、 M I が 6 0 g / 1 0分のポリプロピレンを、 In Example 1, polypropylene having a MI of 60 g / 10 minutes was used.
2 3 0 °C、 荷重 2 1. 1 8 Nにおいて測定した M I が 1 0 g / 1 0分 のポリプロピレン (出光石油化学社製、 Y— 9 0 0 G V ) に変えた 以外は実施例 1 と同様にして、 平均繊維径が 3 0 mの硬化複合繊 維を得た。 実施例 1 と同様にして、 得られた複合繊維を炭素化して 炭素繊維を得、 この炭素繊維を賦活処理して活性炭素繊維を得た。 これらについての測定結果を表 1 に示す。 Example 1 was repeated except that the MI measured at 230 ° C and a load of 21.18 N was changed to polypropylene (Y-900 GV, manufactured by Idemitsu Petrochemical Co., Ltd.) with a weight of 10 g / 10 minutes. Similarly, a cured composite fiber having an average fiber diameter of 30 m was obtained. In the same manner as in Example 1, the obtained composite fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results.
電子顕微鏡写真によ り、 極細炭素繊維 (平均繊維径 0. 2 m ) が 個々に独立した状態で形成されていることが確認された。 また、 極 細炭素繊維の賦活処理を行なう ことによ り、 比表面積が 1 9 7 0 m 2 / gの極細活性炭素繊維を得ることができた。 Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter: 0.2 m) were formed independently of each other. In addition, by performing the activation treatment of the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 197 m 2 / g was obtained.
[実施例 4 ]  [Example 4]
実施例 1 において、 M I が 6 0 g / 1 0分のポリプロピレンを、 密度 0. 9 6 3 g / c m 3 、 1 9 0 °C、 荷重 2 1. 1 8 Nにおいて測定 した M I が 1 4 g / 1 0分のポリェチレン (出光石油化学社製、 1 1 0 Y ) に変えた以外は実施例 1 と同様にして、 平均繊維径がIn Example 1, the MI was measured at a density of 0.963 g / cm 3 at 190 ° C. and a load of 21.18 N with a MI of 14 g. The average fiber diameter was changed in the same manner as in Example 1 except that the polyethylene fiber was changed to 1/10 min.
3 0 mの硬化複合繊維を得た。 実施例 1 と同様にして、 得られた 複合繊維を炭素化して炭素繊維を得、 この炭素繊維を賦活処理して 活性炭素繊維を得た。 これらについての測定結果を表 1 に示す。 電子顕微鏡写真により、 極細炭素繊維 (平均繊維径 0. 2 m ) が 個々に独立した状態で形成されていることが確認された。 また、 極 細炭素繊維の賦活処理を行なう ことによ り、 比表面積が 2 0 3 0 m2 /gの極細活性炭素繊維を得ることができた。 30 m of cured bicomponent fibers were obtained. In the same manner as in Example 1, the obtained conjugate fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results. Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter 0.2 m) were formed individually and independently. In addition, by performing the activation treatment of the ultrafine carbon fiber, the specific surface area is 230 An ultra-fine activated carbon fiber of m 2 / g was obtained.
[実施例 5 ]  [Example 5]
実施例 1 において、 M Iが 6 0 g / 1 0分のポリプロピレンを、 密度 0. 9 6 4 g/c m3 、 1 9 0 °C、 荷重 21. 1 8 Nにおいて測定 した M Iが 2 3 g / 1 0分のポリェチレン (出光石油化学社製、 1 2 0 YK) に変えた以外は実施例 1 と同様にして、 平均繊維径が 3 0 πιの硬化複合繊維を得た。 実施例 1 と同様にして、 得られた 複合繊維を炭素化して炭素繊維を得、 この炭素繊維を賦活処理して 活性炭素繊維を得た。 これらについての測定結果を表 1 に示す。 In Example 1, the polypropylene having MI of 60 g / 10 min was measured at a density of 0.964 g / cm 3 at 190 ° C. and a load of 21. Cured bicomponent fibers having an average fiber diameter of 30πι were obtained in the same manner as in Example 1 except that the polyethylene fiber was changed to polyethylene (120 YK, manufactured by Idemitsu Petrochemical Co., Ltd.) for 10 minutes. In the same manner as in Example 1, the obtained conjugate fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results.
電子顕微鏡写真により、 極細炭素繊維 (平均繊維径 0. 2 m) が 個々に独立した状態で形成されていることが確認された。 また、 極 細炭素繊維の賦活処理を行なう ことによ り、 比表面積が 1 9 9 0 m2 /gの極細活性炭素繊維を得ることができた。 Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter 0.2 m) were formed individually and independently. By activating the ultrafine carbon fibers, ultrafine activated carbon fibers having a specific surface area of 199 m 2 / g could be obtained.
[実施例 6 ]  [Example 6]
実施例 1 において、 M Iが 6 0 g / 1 0分のポリプロピレンを、 密度 0. 9 4 0 g / c m3 、 1 9 0 °C、 荷重 21. 1 8 Nにおいて測定 した M Iが 2 0 g / 1 0分のポリェチレン (出光石油化学社製、 0 7 4 G ) に変えた以外は実施例 1 と同様にして、 平均繊維径が 3 0 mの硬化複合繊維を得た。 実施例 1 と同様にして、 得られた複 合繊維を炭素化して炭素繊維を得、 この炭素繊維を賦活処理して活 性炭素繊維を得た。 これらについての測定結果を表 1 に示す。 In Example 1, the polypropylene having MI of 60 g / 10 min was measured at a density of 0.940 g / cm 3 , 190 ° C., and a load of 21.18 N to have a MI of 20 g / 10 N. Cured bicomponent fibers having an average fiber diameter of 30 m were obtained in the same manner as in Example 1 except that the polyethylene was changed to 10-minute polyethylene (074 G, manufactured by Idemitsu Petrochemical Co., Ltd.). In the same manner as in Example 1, the obtained composite fiber was carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 1 shows the measurement results.
電子顕微鏡写真により、 極細炭素繊維 (平均繊維径 0. 2 m) が 個々に独立した状態で形成されていることが確認された。 また、 極 細炭素繊維の賦活処理を行なう ことによ り、 比表面積が 2 0 7 0 m2 /gの極細活性炭素繊維を得ることができた。 表 1 Electron micrographs confirmed that the ultrafine carbon fibers (average fiber diameter 0.2 m) were formed individually and independently. Further, by performing the activation treatment of the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 270 m 2 / g could be obtained. table 1
Figure imgf000016_0001
Figure imgf000016_0001
[比較例 1 ] [Comparative Example 1]
実施例 1 で合成したフヱノール樹脂を、 ノズル温度 1 5 0 °Cで溶 融紡糸し、 フエノール繊維の原繊を得た。 さらに得られた原繊を塩 酸—ホルムアルデヒ ド水溶液 (塩酸 1 8質量%、 ホルムアルデヒ ド 1 0 '質量%) 中に 9 6 °Cで、 2 4時間浸潰し、 硬化繊維を得た。 次 に、 この硬化繊維を窒素気流中、 9 0 0 °C、 3 0分の条件で炭素化 し、 フエノール系炭素繊維を得た。 得られたフユノール系炭素繊維 を、 水蒸気を用いて 9 0 0 °C . 5分の条件で賦活処理し、 活性炭素 繊維を得た。 これらの炭素繊維および活性炭素繊維について、 上記 の方法により繊維径および比表面積を測定した。 結果を表 2 に示す, 得られたフユ ノール系炭素繊維の電子顕微鏡写真を図 3および図 4 に示す。 図 3 は 1 0 0 0倍の電子顕微鏡写真、 図 4は 5 0 0 0倍の 電子顕微鏡写真である。 得られたフユノール系炭素繊維は、 平均繊 維径 1 0 mであり、 活性炭素繊維の比表面積は 5 0 0 m 2 / gで め つ 7こ。 The phenol resin synthesized in Example 1 was melt-spun at a nozzle temperature of 150 ° C. to obtain a raw phenol fiber. Further, the obtained raw fibers were immersed in an aqueous solution of hydrochloric acid-formaldehyde (18% by mass of hydrochloric acid, 10% by mass of formaldehyde) at 96 ° C. for 24 hours to obtain hardened fibers. Next, the cured fiber was carbonized in a nitrogen stream at 900 ° C. for 30 minutes to obtain a phenolic carbon fiber. The obtained fuynol-based carbon fiber is activated using steam at 900 ° C. for 5 minutes to obtain activated carbon. Fiber was obtained. The fiber diameter and specific surface area of these carbon fibers and activated carbon fibers were measured by the methods described above. The results are shown in Table 2, and the electron micrographs of the obtained phenolic carbon fiber are shown in Figs. FIG. 3 is a 1000 × magnification electron micrograph, and FIG. 4 is a 500 × magnification electron micrograph. The obtained fuynol-based carbon fiber has an average fiber diameter of 10 m, and the activated carbon fiber has a specific surface area of 500 m 2 / g.
[比較例 2 ]  [Comparative Example 2]
実施例 1 において、 M I が 6 0 g / 1 0分のポリプロピレンを、 2 3 0 °C、 荷重 2 1. 1 8 Nにおいて測定した M I が 3 4 g / 1 0分 のポリプロピレン (出光石油化学社製、 2 0 3 4 G ) に変えた以外 は実施例 1 と同様にして、 平均繊維径が 3 0 mの硬化複合繊維を 得た。 実施例 1 と同様にして、 得られた複合繊維を炭素化して極細 の炭素繊維を得、 この炭素繊維を賦活処理して活性炭素繊維を得た, これらについての測定結果を表 2 に示す。  In Example 1, a polypropylene having an MI of 60 g / 10 minutes and a MI of 34 g / 10 minutes measured at 230 ° C. under a load of 21.18 N (Idemitsu Petrochemical Co., Ltd.) In the same manner as in Example 1 except that the cured composite fiber had an average fiber diameter of 30 m. In the same manner as in Example 1, the obtained conjugate fiber was carbonized to obtain a fine carbon fiber, and this carbon fiber was activated to obtain an activated carbon fiber. Table 2 shows the measurement results.
得られた極細炭素繊維の電子顕微鏡写真を図 5および図 6 に示す, 図 5 は 1 0 0 0倍の電子顕微鏡写真、 図 6 は 5 0 0 0倍の電子顕微 鏡写真である。 電子顕微鏡写真によ り、 極細炭素繊維 (平均繊維径 0. 2 u m ) が個々に独立した状態で形成されてはいるが、 融着した り縮れたり していることが確認された。 また、 極細炭素繊維の賦活 処理を行なう ことによ り、 比表面積が 2 0 0 0 m 2 / gの極細活性 炭素繊維を得ることができた。 FIGS. 5 and 6 show electron micrographs of the obtained ultrafine carbon fiber. FIG. 5 is a photomicrograph of × 100 magnification and FIG. 6 is a photomicrograph of × 500 magnification. From the electron micrographs, it was confirmed that the ultrafine carbon fibers (average fiber diameter: 0.2 μm) were formed individually, but were fused and shrunk. By activating the ultrafine carbon fibers, ultrafine activated carbon fibers having a specific surface area of 2000 m 2 / g could be obtained.
[比較例 3 ]  [Comparative Example 3]
実施例 1 において、 M I が 6 0 g / 1 0分のポリプロ ピレンを、 1 9 0 °C、 荷重 2 1. 1 8 Nにおいて測定した M I が 4. 7 g / 1 0分 のポリェチレン (出光石油化学社製、 2 1 0 J Z ) に変えた以外は 実施例 1 と同様にして、 複合樹脂べレッ トを得た。 In Example 1, MI was measured at 60 g / 10 min with a polypropylene at 190 ° C. under a load of 2.18 N. Chemical company, 210 JZ) In the same manner as in Example 1, a composite resin bellet was obtained.
次に、 得られた複合樹脂をノズル温度 1 5 0 °Cで溶融紡糸を行な つた。 紡糸工程において、 安定した押し出しを行なう ことができず 繊維が切れたため良好な紡糸を行なう ことができなかったが、 平均 繊維径 1 0 0 mの海島型の未硬化複合繊維を得ることはできた。 実施例 1 と同様にして、 得られた複合繊維を硬化し、 炭素化して炭 素繊維を得、 この炭素繊維を賦活処理して活性炭素繊維を得た。 こ れらについての測定結果を表 2 に示す。  Next, the obtained composite resin was melt-spun at a nozzle temperature of 150 ° C. In the spinning process, stable extrusion could not be performed, and good spinning could not be performed due to fiber breakage, but sea-island uncured conjugate fibers with an average fiber diameter of 100 m could be obtained. . In the same manner as in Example 1, the obtained conjugate fiber was cured and carbonized to obtain a carbon fiber, and the carbon fiber was activated to obtain an activated carbon fiber. Table 2 shows the measurement results.
電子顕微鏡写真によ り、 極細炭素繊維 (平均繊維径 0. 3 m ) が 個々に独立した状態で形成されていることが確認された。 また、 極 細炭素繊維の賦活処理を行なう ことによ り、 比表面積が 1 9 8 0 m 2 / gの極細活性炭素繊維を得ることができた。 From the electron micrograph, it was confirmed that the ultrafine carbon fibers (average fiber diameter: 0.3 m) were formed individually and independently. Further, by performing the activation treatment of the ultrafine carbon fiber, an ultrafine activated carbon fiber having a specific surface area of 198 m 2 / g could be obtained.
[比較例 4 ]  [Comparative Example 4]
実施例 1 において、 M I が 6 0 g / 1 0分のポリプロピレンを、 2 3 0 °C、 荷重 2 1.' 1 8 Nにおいて測定した M I が 4. 0 g / 1 0分 のポリプロピレン (出光石油化学社製、 Y— 4 0 0 G P ) に変えた 以外は実施例 1 と同様にして、 複合樹脂べレッ トを得た。  In Example 1, a polypropylene having an MI of 4.0 g / 10 min measured at 230 ° C. under a load of 21.'18 N was prepared from polypropylene having an MI of 60 g / 10 min. A composite resin velvet was obtained in the same manner as in Example 1 except that Y-400 GP manufactured by Chemical Co., Ltd. was used.
次に、 得られた複合樹脂をノズル温度 1 7 0 °Cで溶融紡糸を行な つた。 紡糸工程において、 安定した押し出しを行なう ことができず 、 繊維が切れたため良好な紡糸を行なう ことができなかったが、 平 均繊維径 1 0 0 u mの海島型の未硬化複合繊維を得ることはできた, 実施例 1 と同様にして、 得られた複合繊維を硬化し、 炭素化して炭 素繊維を得、 この炭素繊維を賦活処理して活性炭素繊維を得た。 こ れらについての測定結果を表 2 に示す。  Next, the obtained composite resin was melt-spun at a nozzle temperature of 170 ° C. In the spinning process, stable extrusion could not be performed, and good spinning could not be performed because the fibers were cut.However, it was not possible to obtain sea-island type uncured composite fibers having an average fiber diameter of 100 μm. The obtained composite fiber was cured and carbonized to obtain carbon fiber in the same manner as in Example 1, and the carbon fiber was activated to obtain an activated carbon fiber. Table 2 shows the measurement results.
電子顕微鏡写真によ り、 極細炭素繊維 (平均繊維径 0. 3 m ) が 個々に独立した状態で形成されていることが確認された。 また、 極 細炭素繊維の賦活処理を行なう こ とによ り、 比表面積が 2 0 3 0From the electron micrograph, it was confirmed that the ultrafine carbon fibers (average fiber diameter: 0.3 m) were formed individually and independently. Also the pole By activating the fine carbon fiber, the specific surface area is 230
HI 2 / gの極細活性炭素繊維を得るこ とができた。 表 2HI 2 / g ultra-fine activated carbon fibers were obtained. Table 2
Figure imgf000019_0001
Figure imgf000019_0001
産業上の利用可能性 Industrial applicability
本発明の複合繊維用樹脂組成物から得られる複合繊維を炭素化す ることにより、 平均繊維径が 0. 5 U m以下の極細炭素繊維を容易に 製造することができる。  By carbonizing the composite fiber obtained from the resin composition for a composite fiber of the present invention, an ultrafine carbon fiber having an average fiber diameter of 0.5 Um or less can be easily produced.

Claims

請求の範囲 The scope of the claims
1 . フヱノール樹脂 1 0〜 5 0質量%ぉよび温度 2 3 0 ° (:、 荷重 2 1. 1 8 Nの条件で測定した M I (メルトイ ンデッ クス) が 1 0 〜 1 0 0 g / 1 0分のポリプロ ピレン 9 0 〜 5 0質量%からなる複合 繊維用樹脂組成物。 1. Phenol resin 10 to 50% by mass and temperature 230 ° (MI: Melt index measured under the condition of load 2 1.18 N) is 10 to 100 g / 100. Resin composition for composite fibers, comprising 90 to 50% by mass of polypropylene for 1 minute.
2 . フヱノール樹脂が、 軟化点 9 0 °C以上のノポラッ ク型フヱノー ル樹脂である請求の範囲第 1項に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the phenolic resin is a nopolak-type phenolic resin having a softening point of 90 ° C or more.
3 . 請求の範囲第 1項に記載の樹脂組成物を紡糸することによ り得 られる平均繊維径が 5 〜 1 0 0 mの複合繊維。 3. A conjugate fiber having an average fiber diameter of 5 to 100 m, obtained by spinning the resin composition according to claim 1.
4 . 請求の範囲第 3項に記載の複合繊維を炭素化することによ り得 られる平均繊維径が 0. 5 11 m以下の極細炭素繊維。 4. An ultrafine carbon fiber having an average fiber diameter of 0.511 m or less obtained by carbonizing the conjugate fiber according to claim 3.
5 . 請求の範囲第 4項に記載の極細炭素繊維を賦活処理することに より得られる極細活性炭素繊維。 5. An ultrafine activated carbon fiber obtained by activating the ultrafine carbon fiber according to claim 4.
6 · 請求の範囲第 3項〜第 5項のいずれかに記載の繊維を賦形して なる賦形物。 6 · A shaped article obtained by shaping the fiber according to any one of claims 3 to 5.
7 . フヱノール樹脂 1 0〜 5 0質量%および密度 0. 9 4 0 g / c m 3 以上、 温度 1 9 0 °C、 荷重 2 1. 1 8 Nの条件で測定した M I (メル トイ ンデッ クス) が 1 0 〜 3 0 g / 1 0分のポリエチレン 9 0 〜 5 0質量%からなる複合繊維用樹脂組成物。 7. Fuwenoru resin 1 0-5 0% by weight and density 0. 9 4 0 g / cm 3 or more, a temperature 1 9 0 ° C, MI, measured under a load of 2 1. 1 8 N (Mel Toys Nde' box) Is a resin composition for conjugate fiber comprising 90 to 50% by mass of polyethylene of 10 to 30 g / 10 minutes.
8 . フヱ ノール樹脂が、 軟化点 9 0 °C以上のノポラ ッ ク型フ エ ノー ル樹脂である請求の範囲第 7項に記載の樹脂組成物。 8. The resin composition according to claim 7, wherein the phenol resin is a nopolak phenol resin having a softening point of 90 ° C. or higher.
9 . 請求の範囲第 7項に記載の樹脂組成物を紡糸することによ り得 られる平均繊維径が 5〜 1 0 0 mの複合繊維。 9. A conjugate fiber having an average fiber diameter of 5 to 100 m, obtained by spinning the resin composition according to claim 7.
1 0 . 請求の範囲第 9項に記載の複合繊維を炭素化するこ とによ り 得られる平均繊維径が 0. 5 m以下の極細炭素繊維。 10. An ultrafine carbon fiber having an average fiber diameter of 0.5 m or less obtained by carbonizing the conjugate fiber according to claim 9.
1 1 . 請求の範囲第 1 0項に記載の極細炭素繊維を賦活処理するこ とにより得られる極細活性炭素繊維。 11. An ultrafine activated carbon fiber obtained by activating the ultrafine carbon fiber according to claim 10.
1 2 . 請求の範囲第 9項〜第 1 1項のいずれかに記載の繊維を賦形 してなる賦形物。 12. A shaped article obtained by shaping the fiber according to any one of claims 9 to 11.
PCT/JP2002/006996 2001-07-10 2002-07-10 Resin compositions for composite fiber WO2003006723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-209742 2001-07-10
JP2001209742A JP2003020517A (en) 2001-07-10 2001-07-10 Resin composition for compound fiber

Publications (1)

Publication Number Publication Date
WO2003006723A1 true WO2003006723A1 (en) 2003-01-23

Family

ID=19045358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006996 WO2003006723A1 (en) 2001-07-10 2002-07-10 Resin compositions for composite fiber

Country Status (2)

Country Link
JP (1) JP2003020517A (en)
WO (1) WO2003006723A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1646438A1 (en) * 2003-07-18 2006-04-19 Koslow Technologies Corporation Carbon or activated carbon nanofibers
US8114383B2 (en) 2003-08-06 2012-02-14 Gruenenthal Gmbh Abuse-proofed dosage form
US8323889B2 (en) 2004-07-01 2012-12-04 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166565B1 (en) * 2019-04-29 2020-10-16 충남대학교산학협력단 Core-sheath type activated carbon composite fiber and method for preparing the same and absorbent for comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064124A (en) * 1998-08-12 2000-02-29 Gun Ei Chem Ind Co Ltd Production of high strength and high elongation phenol- based conjugate fiber
JP2001073230A (en) * 1999-08-30 2001-03-21 Gun Ei Chem Ind Co Ltd Phenolic conjugate fiber, phenolic hollow carbon fiber and production of them
JP2001073226A (en) * 1999-08-30 2001-03-21 Gun Ei Chem Ind Co Ltd Conjugate fiber, phenolic ultrafine carbon fiber and production of them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064124A (en) * 1998-08-12 2000-02-29 Gun Ei Chem Ind Co Ltd Production of high strength and high elongation phenol- based conjugate fiber
JP2001073230A (en) * 1999-08-30 2001-03-21 Gun Ei Chem Ind Co Ltd Phenolic conjugate fiber, phenolic hollow carbon fiber and production of them
JP2001073226A (en) * 1999-08-30 2001-03-21 Gun Ei Chem Ind Co Ltd Conjugate fiber, phenolic ultrafine carbon fiber and production of them

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
EP1646438A4 (en) * 2003-07-18 2008-10-08 Kx Technologies Llc Carbon or activated carbon nanofibers
EP1646438A1 (en) * 2003-07-18 2006-04-19 Koslow Technologies Corporation Carbon or activated carbon nanofibers
US8114383B2 (en) 2003-08-06 2012-02-14 Gruenenthal Gmbh Abuse-proofed dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US10130591B2 (en) 2003-08-06 2018-11-20 Grünenthal GmbH Abuse-proofed dosage form
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form
US8323889B2 (en) 2004-07-01 2012-12-04 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10864164B2 (en) 2011-07-29 2020-12-15 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations

Also Published As

Publication number Publication date
JP2003020517A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
WO2003006723A1 (en) Resin compositions for composite fiber
CN1134491C (en) Polyolefin microporous film and method for preparing same
US5055248A (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
KR101176807B1 (en) Carbon fiber nonwoven fabric,and production method and use thereof
KR101031207B1 (en) Process and composition for the production of carbon fiber and mats
JP5462227B2 (en) Process for producing polyolefin microporous stretched film with cellulose nanofiber, polyolefin microporous stretched film with cellulose nanofiber, and separator for non-aqueous secondary battery
EP0115192B2 (en) Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene
EP0202554B1 (en) Hollow fiber
KR101389781B1 (en) Microporous polyolefin membrane, its production method, battery separator, and battery
US5230949A (en) Nonwoven webs of microporous fibers and filaments
CN1228101A (en) High density polyethylene films with improved barrier
US5230843A (en) Process of forming microporous fibers and filaments
CN102414015A (en) Thermoplastic film, methods for making such film, and use of such film as battery separator film
US5126219A (en) Microporous filaments and fibers, and articles made therefrom
TWI798660B (en) Non-melting polyphenylene ether fiber, non-melting polyphenylene ether molded article, carbon fiber, activated carbon fiber, carbon fiber molded article, activated carbon fiber molded article, and manufacturing method thereof
JP6653476B2 (en) Fiber aggregate and sound absorbing material
EP2960360B1 (en) Fiber, fabric, and nonwoven fabric
JP5261933B2 (en) Oxymethylene composite fiber
JP3128246B2 (en) Polyarylene sulfide melt blow molding methods and products
JP2001073230A (en) Phenolic conjugate fiber, phenolic hollow carbon fiber and production of them
KR20160098460A (en) Poly(phenylene ether) fiber, method of forming, and articles therefrom
JP2001073226A (en) Conjugate fiber, phenolic ultrafine carbon fiber and production of them
KR100637631B1 (en) Method of manufacturing polyethylene microporous film for rechargeable battery separator and polyethylene microporous film thereby
KR101504436B1 (en) Polypropylene composition for lithium ion battery separator
WO2021034499A2 (en) A new class of carbon fiber precursors and production process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase