Пошук Зображення Карти YouTube Новини Gmail Диск Календар Більше »
Увійти
Для користувачів програм зчитування з екрана: натисніть це посилання, щоб перейти в режим доступності. Режим доступності має всі основні функції, але краще працює з програмою зчитування з екрана.

Патенти

  1. Розширений пошук патентів
Номер публікаціїUS20030077320 A1
Тип публікаціїЗаявка на патент
Номер заявкиUS 10/267,500
Дата публікації24 квіт. 2003
Дата реєстрації заявки18 груд. 2002
Дата пріоритету16 вер. 1994
Також опубліковано якUS5866161, US6491945, WO1996008253A1
Номер публікації10267500, 267500, US 2003/0077320 A1, US 2003/077320 A1, US 20030077320 A1, US 20030077320A1, US 2003077320 A1, US 2003077320A1, US-A1-20030077320, US-A1-2003077320, US2003/0077320A1, US2003/077320A1, US20030077320 A1, US20030077320A1, US2003077320 A1, US2003077320A1
ВинахідникиJerry Childers, George Guittard, Glen Barclay, Anthony Kuczynski, Patrick Wong
Оригінальний правонаступникChilders Jerry D., Guittard George V., Barclay Glen E., Kuczynski Anthony L., Wong Patrick S.-L.
Експортувати цитуванняBiBTeX, EndNote, RefMan
Зовнішні посилання: USPTO (Бюро патентів і товарних знаків США), USPTO – передача прав, Espacenet
Hydrocodone therapy
US 20030077320 A1
Анотація
A hydrocodone composition, a hydrocodone dosage form, and a method of administering hydrocodone are disclosed and indicated for hydrocodone therapy.
Зображення(6)
Previous page
Next page
Патентна формула(19)
1. A therapeutic composition comprising 0.5 to 1250 mg of hydrocodone, 10 mg to 350 mg of a poly(alkylene oxide) possessing a 75,000 to 400,000 molecular weight, 5 mg to 50 of hydroxyalkylcellulose possessing a 9,000 to 150,000 molecular weight, and 0.01 mg to 5 mg of a lubricant.
2. The therapeutic composition according to claim 1, wherein the hydrocodone is selected from the group consisting of hydrocodone pharmaceutically acceptable salt, hydrocodone bitartrate hemipentahydrate, hydrocodone bitartrate, hydrocodone bitartrate hydrate, hydrocodone hydrochloride, hydrocodone phosphate, hydrocodone sulfate, hydrocodone mucate, hydrocodone sulfate pentahydrate and hydrocodone oleate.
3. The therapeutic composition according to claim 1, wherein the composition is compressed under 1⅛ to 10-ton force compression, and a semipermeable wall with an exit passageway encased the therapeutic composition.
4. A therapeutic composition comprising 0.5 to 1250 mg of hydrocodone, 10 to 50 mg of alkali carboxymethylcellulose of 70,000 to 400,000 molecular weight, 5 to 50 mg of hydroxypropylalkylcellulose of 9,000 to 150,000 molecular weight, and 0.01 to 5 mg of a lubricant.
5. The therapeutic composition according to claim 4, wherein the therapeutic composition comprises poly(vinylpyrrolidone).
6. The therapeutic composition according to claim 4, wherein the therapeutic composition comprises sorbitol.
7. The therapeutic composition according to claim 4, wherein the hydrocodone is selected from the group consisting of hydrocodone bitartrate hemipentahydrate, hydrocodone bitartrate, hydrocodone hydrochloride, hydrocodone phosphate and hydrocodone sulfate.
8. The therapeutic composition according to claim 4, wherein a semipermeable wall with an exit passageway surrounds the therapeutic composition.
9. A bilayer composition comprising a hydrocodone layer comprising 0.5 to 1250 mg of hydrocodone, 10 mg to 350 mg of a poly(alkylene oxide) of 75,000 to 400,000 molecular weight, 5 to 50 mg of a hydroxyalkylcellulose of 9,000 to 450,000 molecular weight and 0.01 to 5 mg of a lubricant; and a push layer comprising 25 to 300 mg of a poly(alkylene oxide) of 3,000,000 to 7,500,000 molecular weight, 5 to 150 mg of an osmagent, and 1 to 30 mg of a hydroxypropylalkylcellulose of 9,200 to 175,000 molecular weight.
10. The bilayer composition according to claim 4, wherein the push composition comprises an antioxidant.
11. The bilayer composition according to claim 4, wherein the push composition comprises a lubricant.
12. The bilayer composition according to claim 4, wherein a semipermeable wall with an exit passageway surrounds the bilayer composition.
13. A bilayer composition comprising a hydrocodone layer comprising 0.5 to 1250 mg of hydrocodone, 10 to 50 mg of alkli carboxymethylcellulose comprising a 70,000 to 400,000 molecular weight, 5 to 50 mg of hydroxypropylalkylcellulose of 9,000 to 150,000 molecular weight; and a push layer comprising 10 to 60 mg of an alkali carboxymethylcellulose of 650,000 to 1,200,000 molecular weight, 5 to 75 mg of an osmagent, and 1 to 30 mg of a hydroxypropylalkylcellulose of 9,000 to 150,000 molecular weight.
14. The bilayer composition according to claim 13 wherein the hydrocodone layer comprises a poly(vinylpyrrolidone).
15. The bilayer composition according to claim 13, wherein a semipermeable wall comprising a passageway surrounds the bilayer composition.
16. A method for administering 0.5 to 1250 mg of hydrocodone to a patient in need of hydrocodone therapy, which method comprises admitting orally into the gastrointestinal tract of the patient a sustained delivery composition comprising the hydrocodone, and a polymer carrier for the hydrocodone comprising a 75,000 to 400,000 molecular weight that is delivered at a rate of release of 0.5 mg to 10 mg per hour over a sustained period of 20 hours.
17. The method for administering the hydrocodone according to claim 16, wherein the hydrocodone composition is surrounded by a semipermeable wall permeable to the passage fluid in the gastrointestinal tract and impermeable to the passage of hydrocodone, with a passageway in the semipermeable wall for delivering the hydrocodone to the patient.
18. A method for administering 0.5 to 1250 mg of hydrocodone to a patient in need of hydrocodone therapy, which method comprises orally administering the hydrocodone at a rate of 0.5 mg to 10 mg per hour over 20 hours, for hydrocodone therapy.
19. A method for administering 0.5 to 1250 mg of hydrocodone to a patient in need of hydrocodone therapy, which method comprises orally admitting into the gastrointestinal tract of the patient a bilayer comprising a hydrocodone layer comprising 0.5 to 1250 mg of hydrocodone, 10 mg to 350 mg of poly(alkylene oxide) possessing a 75,000 to 400,000 molecular weight, 5 to 50 mg of a hydroxyalkylcellulose of 9,000 to 450,000 molecular weight and 0.01 to 5 mg of a lubricant; and a push layer comprising 25 mg to 300 mg of a poly(alkylene oxide) of 3,000 to 7,500,000 molecular weight 5 to 150 mg an osmagent, and 1 to 30 mg of a hydroxypropylalkylcellulose of 9,200 to 175,000 molecular weight, which bilayer delivers the hydrocodone over a period of 30 hours to the gastrointestinal tract of the patient.
Опис
    FIELD OF THE INVENTION
  • [0001]
    This invention pertains to a novel therapeutic composition comprising hydrocodone. The invention concerns also a novel dosage form comprising hydrocodone. Additionally, the invention relates to a novel method of administering a dose of hydrocodone from a therapeutic composition, and to a novel method of administering a dose of hydrocodone from a dosage form that in both administrations are for producing antitussive and analgesic therapy.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Hydrocodone is chemically 4,5-epoxy-3-methoxy-17-methyl-morphinan-6-one. The synthesis of hydrocodone and its pharmaceutically acceptable acid addition salts are described in U.S. Pat. No. 2,71 5,629 issued to Pfister et al, and in the Merck Index, 11th Edition, page 757, entry 4708 (1989). Hydrocodone is a narcotic antitussive and analgesic. The mechanism of physiological and pharmacological actions of hydrocodone is believed that it acts directly by depressing the cough centers for its antitussive therapy. At antitussive doses, hydrocodone exerts also analgesic effects. Hydrocodone exhibits a complex pattern of metabolism including O-demethylation, N-dimethylation and 6-keto reduction to the corresponding 6-β-hydroxy metabolites.
  • [0003]
    The prior art administers hydrocodone in conventional tablet and syrup forms, which forms dose-dump hydrocodone thereby providing a concentration of hydrocodone followed by an absence of hydrocodone. This pharmaceodynamic variability with its fluctuation in hydrocodone availability to hydrocodone receptor sites produces uncertainty as it is unknown if a dose of hydrocodone is present for needed therapy. The prior art is deficient in providing controlled hydrocodone therapy to a patient seeking such therapy. The pharmacological properties of hydrocodone are known in The Pharmacological Basis of Therapy, by Gilman and Rall, 8th Edition, pg. 497, (1990); and in Pharmaceutical Sciences, Remington, 17th Ed., pg. 1104, (1985).
  • SUMMARY OF THE INVENTION
  • [0004]
    In view of the foregoing presentation, it is immediately apparent that a present and critical need exists for an improvement in the delivery of hydrocodone for its therapeutic antitussive and analgesic effects. The need exists for providing a novel therapeutic composition comprising hydrocodone, the need exists for providing a novel dosage form comprising hydrocodone, and the need exists for providing a novel method for administering hydrocodone to a patient in need of hydrocodone therapy. It is, therefore, an object of this invention to provide a therapeutic composition comprising hydrocodone with means for enhancing the administration of hydrocodone over time. It is also an object of the invention to provide a dosage form with means for controlling the delivery of hydrocodone that overcomes fluctuation in hydrocodone therapy. It is an additional object of the invention to provide a method for administering hydrocodone for better hydrocodone therapy.
  • DESCRIPTION OF THE INVENTION
  • [0005]
    The drug hydrocodone, as embraced by this invention, comprises a member selected from the group consisting of hydrocodone and its pharmaceutically acceptable salts. Representative of hydrocodone pharmaceutically acceptable salts comprises a member selected from the group consisting of hydrocodone bitartrate, hydrocodone bitartrate hydrate, hydrocodone hydrochloride, hydrocodone p-toluenesulfonate, hydrocodone phosphate, hydrocodone thiosemicarbazone, hydrocodone sulfate, hydrocodone trifluoroacetate, hydrocodone, hydrocodone bitartrate, dihydrocodeinone bitartrate, hydrocodone bitartrate hemipentahydrate, pentafluoropropionate, hydrocodone p-nitrophenylhydrazone, hydrocodone o-methyloxime, hydrocodone semicarbazone, hydrocodone hydrobromide, hydrocodone mucate, hydrocodone oleate, hydrocodone phosphate dibasic, hydrocodone phosphate monobasic, hydrocodone inorganic salt, hydrocodone organic salt, hydrocodone acetate trihydrate, hydrocodone bis(heptafuorobutyrate), hydrocodone bis(methylcarbamate), hydrocodone bis(pentafluoropropionate), hydrocodone bis(pyridine carboxylate), hydrocodone bis(trifluoroacetate), hydrocodone chlorhydrate, and hydrocodone sulfate pentahydrate.
  • [0006]
    The following examples are merely illustrative of the invention, and they should not be considered as limiting the scope of the invention in any way as these examples and other equivalents thereof will become more apparent to those versed in the art.
  • EXAMPLE 1
  • [0007]
    A novel, therapeutic composition comprising hydrocodone, wherein the hydrocodone is a member selected from the group consisting of hydrocodone pharmaceutically acceptable base and hydrocodone pharmaceutically acceptable salt is prepared as follows: first, 3.00 g of hydrocodone bitartrate hemipentahydrate, 6.45 g of poly(ethylene oxide) possessing a 200,000 molecular weight and 0.50 g of hydroxypropylmethylcellulose possessing a 11,200 molecular weight are dry blended on a roll mill at 50% of the maximum speed for 5 minutes. Then, 7 ml of denatured ethyl alchohol and the dry blend are slowly mixed together with a spatula for 5 minutes. After drying, the wetted mass is passed through a 0.03331 inch (0.85 mm) screen, and it is dried overnight at room temperature. Next, 0.049 g of magnesium stearate is blended with the granulation for 2 minutes on a roll mill at 50% of maximum speed. Then, a series of extended delivery {fraction (11/32)} inch (8.73 mm) round tablets are prepared by compressing the composition with a 1⅛-ton compression force. The high compression force imparts an increase in density and hardness and a decrease in fluid penetrability of the tablet thereby imparting extended delivery to the hydrocodone tablet. This hydrocodone tablet comprises 60 mg of hydrocodone bitartrate hemipentahydrate, 81.75 mg of poly(ethylene oxide), 7.5 mg of hydroxypropylmethylcellulose, and 0.75 mg of magnesium stearate.
  • EXAMPLE 2
  • [0008]
    The therapeutic composition manufactured by following the above example provides compositions comprising 0.5 mg to 1250 mg of a member selected from the group consisting of hydrocodone and hydrocodone pharmaceutically acceptable salt; 10 to 350 mg of a polymeric carrier for the hydrocodone selected from a poly(alkylene oxide) comprising a 75,000 to 400,000 molecular weight selected from poly(methylene oxide), poly(ethylene oxide), poly(propylene oxide), poly(isopropylene oxide) and poly(butylene oxide), and 5 to 50 mg of a hydroxyalkylcellulose or a hydroxypropylalkylcellulose possessing a 9,000 to 150,000 molecular weight as represented by a member selected from the group consisting of hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxypropylisopropylcellulose, hydroxypropylbutylcellulose, and hydroxypropylpentylcellulose; and 0.01 to 5 mg of a lubricant selected from the group consisting of magnesium stearate, calcium stearate, potassium oleate, sodium stearate, stearic acid, sodium palmitate, corn starch, potato starch, bentonite, citrus pulp, and stearic acid.
  • EXAMPLE 3
  • [0009]
    Following the procedures of Examples 1 and 2, the hydrocodone composition is encapsulated with a semipermeable polymeric composition provided with a hydrocodone-releasing orifice to provided an extended delivery dosage form.
  • EXAMPLE 4
  • [0010]
    A novel dosage form for delivering hydrocodone substantially free of delivery fluctuation is prepared as follows: first, 3.00 g of hydrocodone bitratrate hemipentahydrate, 6.45 g of poly(ethylene oxide) possessing a 200,000 molecular weight, and 0.50 g of hydroxypropylmethylcellulose possessing a 11,200 molecular weight are dry blended on a roll mill at 50% of the maximum speed for 5 minutes. Then, 7 ml of denatured ethyl alcohol and the dry blend are slowly mixed together for 5 minutes. After drying, this wetted mass is passed through a 0.03331 inch (0.85 mm) screen, and then dried overnight at room temperature. Next, 0.049 g of magnesium stearate is blended with the granulation for 2 minutes on a roll mill at 50% of maximum speed. Then, a number of {fraction (11/32)} inch (8.73 mm) tablets are compressed with 1-ton compression force. Each tablet contains 194 mg of hydrocodone drug granulation.
  • [0011]
    Next, a displacement or push composition comprising 25 to 300 mg of poly(ethylene oxide) of 3,500,000 to 7,500,000 molecular weight, 5 to 150 mg of an osmagent, 0 to 30 mg of a hydroxypropylcellulose of 9,200 to 175,000 molecular weight, 0 to 10 mg of ferric oxide, 0 to 10 mg of lubricant, and 0 to 3.5 mg of antioxidant is prepared according to the examples. An embodiment of the displacement or push composition comprises 47.76 mg of poly(ethylene oxide) of 7,000,000 molecular weight, 22.5 mg of osmagent sodium chloride, 3.75 mg of hydroxypropylmethylcellulose of 11,200 molecular weight, 0.18 mg of ferric oxide, 0.75 mg of magnesium stearate, and 0.06 mg of butytlated hydroxytolune is prepared by the accompanying procedure.
  • [0012]
    The push granulation is fluid bed granulated at 120 kg scale on a fluid bed granulator. A binder solution is made by dissolving hydroxypropylmethylcellulose, butylated hydroxytoluene in water and ethanol. This binder solution is sprayed onto the poly(ethylene oxide), sodium chloride, hydroxypropylmethylcellulose and ferric oxide blend, while the blend is fluidized and is forming granules. After the granulation is dried, the granulation is milled in a fluid air mill. Next, a lubricant magnesium stearate is added to the dry granulation.
  • [0013]
    A semipermeable composition comprising 80:19:1, wt:wt:wt, mixture of cellulose acetate comprising an acetyl content of 39.8%, poly(vinylpyrrolidone) and triethylcitrate dissolved in an 80:20, v:v, mixture of acetone and methanol at 4% solids is sprayed around the bilayer core comprising a compressed layer of hydrocodone composition and a compressed layer of push composition to provide a compressed bilayer, to apply the semipermeable wall. Next, a 25 mil (0.64 mm) orifice is drilled into each dosage form and the dosage form dried overnight at 40° celsius. The semipermeable wall weighed 35 mg. The dosage form has a mean release rate of 6.44 mg/hr over 15 hours.
  • EXAMPLE 5
  • [0014]
    Following the above procedure, dosage forms are provided possessing a hydrocodone rate of release of 0.5 mg to 10 mg per hour over 20 hours.
  • EXAMPLE 6
  • [0015]
    The osmagent for the purpose of this invention in the hydrocodone and push compositions comprises a member selected from the osmotic solutes consisting of magnesium sulfate, sodium chloride, lithium chloride, potassium sulfate, sodium sulfate, lithium sulfate, potassium acid phosphate, mannitol, urea, inositol, magnesium succinate, tartaric acid, carbohydrates like raffinose, sucrose, glucose, lactose, fructose, sodium chloride, and fructose, and potassium chloride and dextrose.
  • EXAMPLE 7
  • [0016]
    The procedures above described are followed for the controlled delivery of hydrocodone at a metered rate is prepared wherein the dosage form comprises a hydrocodone layer comprising 58.08 mg of hydrocodone bitartrate hemipentahydrate, 125.06 mg of poly(ethylene oxide) possessing a 200,000 molecular weight, 9.8 mg of hydroxypropylmethylcellulose of 9,400 molecular weight, and 0.97 mg of magnesium stearate. A push layer comprising 47.76 mg of poly(ethylene oxide) possessing a 7,000,000 molecular weight, 22.5 mg of osmotic solute sodium chloride, 3.75 mg of hydroxypropylmethylcellulose of 11,200 molecular weight, 0.75 mg of magnesium stearate, 0.18 mg of ferric oxide and 0.06 mg of butylated hydroxytoluene. The bilayer compositions are surrounded by a semipermeable wall comprising 25.92 mg of cellulose acetate comprising 39.8% acetyl content, 6.15 mg of poly(vinylpyrrolidone) of 40,000 molecular weight and 0.324 mg of plasticizer triethyl citrate. The dosage forms comprise a 25 mil (0.64 mm) orifice and exhibits a mean release rate of 5.105 mg/hr of hydrocodone over a sustained period of therapy over 16 hours.
  • EXAMPLE 8
  • [0017]
    The procedures of the above examples are followed to produce a hydrocodone composition comprising 60.00 mg of hydrocodone bitartrate hemipentahydrate, 81.75 mg of poly(ethylene oxide) of 200,000 molecular weight, 7.50 mg of hydroxypropylmethylcellulose of 9,200 molecular weight, and 0.75 mg of magnesium stearate. The semipermeable wall that surrounded the hydrocodone comprises 75:24:1, wt:wt:wt, mixture of cellulose acetate with an acetyl content of 39.8%, poly(vinylpyrrolidone) of 40,000 molecular weight and triethyl citrate. The semipermeable composition is dissolved in a 80:20, v:v, mixture of acetone and methanol at 4% solids. The semipermeable wall weighed 43.4 mg.
  • EXAMPLE 9
  • [0018]
    Representative of antioxidants for providing the dosage forms of this invention comprise a member selected from the group consisting of d-alpha tocopherol, dl-alpha tocopherol, d-alpha-tocopherol acetate, dl-alpha-tocopherol, ascorbyl palmitate, ascorbic acid, butylated hydroxyanisole, butylated hydroxytoluene, and propyl gallate.
  • EXAMPLES 10-11
  • [0019]
    The procedure of the above examples is followed except in these examples there is provided in one manufacture a hydrocodone composition comprising a poly(ethylene oxide) consisting of a 100,000 molecular weight, and in another manufacture the hydrocodone composition comprises the hydrocodone composition comprising a poly(ethylene oxide) of 300,000 molecular weight.
  • EXAMPLE 12
  • [0020]
    The wall provided by the above examples are semipermeable possessing a permeability to aqueous including biological fluids and impermeable to hydrocodone. The semipermeable walls comprise 15 mg to 200 mg of a cellulose polymer selected from the group consisting of a cellulose ester, cellulose diester, cellulose triester, cellulose ether, cellulose ester-ether, cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, and cellulose triacetate; the wall comprises 0 to 5 mg of a plasticizer represented by a member selected from the group consisting of trimethyl citrate, triethyl citrate, tributyl citrate, acetyltributyl citrate, acetyl tri-2-ethyl citrate, tributyl phosphate, triethyl phosphate, triphenyl citrate, tricyclohexyl citrate, and tricresyl citrate; the semipermeable wall comprises 2 mg to 50 mg of a poly(vinyl) polymer possessing a 10,000 to 200,000 molecular weight as represented by poly(vinyl pyrrolidone), copolymer of poly(vinyl-pyrrolidone and (vinyl acetate), copolymer of poly(vinyl pyrrolidone and vinyl alcohol), copolymer of poly(vinyl pyrrolidone and vinyl chloride), copolymer of poly(vinyl pyrrolidone and vinyl fluoride), copolymer of poly(vinyl pyrrolidone and vinyl butyrate), copolymer of poly(vinyl pyrrolidone and vinyl laurate),and copolymer of poly (vinyl pyrrolidone and vinyl stearate).
  • [0021]
    Exemplary solvents used for the present purpose comprise inorganic and organic solvents that do not adversely harm the materials and the final wall or the final compositions in the dosage form. The solvents broadly include members selected from the group consisting of aqueous solvents, alcohols, ketones, esters, ethers, aliphatic hydrocarbons, halogenated solvents, cycloaliphatics, aromatics, heterocyclic solvents, and mixtures thereof. Typical solvents include acetone, diacetone alcohol, methanol, ethanol, butyl alcohol, methyl acetate, ethyl acetate, isopropyl acetate, n-butyl acetate, methyl isobutyl ketone, methyl propyl ketone, n-hexane, n-heptane, ethylene glycol monoethyl ether, ethylene glycol monethyl acetate, methylene dichloride, ethylene dichloride, propylene dichloride, carbon tetrachloride, chloroform, nitroethane, nitropropane, tetrachloroethane, ethyl ether, isopropyl ether, cyclo-hexane, cyclo-octane, benzene, toluene, naphtha, 1,4-dioxane, tetrahydrofuran, diglyme, aqueous and nonaqueous mixtures thereof, such as acetone and water, acetone and methanol, acetone and ethyl alcohol, methylene dichloride and methanol, and ethylene dichloride and methanol.
  • [0022]
    Exit means, as used in the above examples for the dosage forms as used by this invention comprise means and methods suitable for the metered release of beneficial drug hydrocodone from the dosage form. The exit means comprises at least one passageway, orifice, or the like, through the wall for communicating with hydrocodone the dosage form. The expression, “at least one passageway,” comprises aperture, orifice, bore, pore, porous element through which the hydrocodone can migrate, hollow fiber, capillary tube, porous overlay, porous insert, and the like. The expression also includes a material that erodes or is leached from the wall in the fluid environment of use to produce least one passageway in the dosage form. Representative materials suitable for forming at least one passageway, or a multiplicity of passageways, include an erodible poly(glycolic) acid, or poly(lactic) acid member in the wall, a gelatinous filament, poly(vinyl alcohol), leachable materials such as fluid removable pore forming polysaccharides, salts, oxides, or the like. A passageway or a plurality of passageways can be formed by leaching a material such as sorbitol, lactose, fructose and the like from the wall. The passageway can have any shape such as round, triangular, square, elliptical, and the like, for assisting in the metered release of hydrocodone from the dosage form. The dosage form can be constructed with one or more passageways in spaced apart relations, or more than one passageway on a single surface of a dosage form. Passageways and equipment for forming passageways are disclosed in U.S. Pat. Nos. 3,845,770, 3,916,899; 4,063,064; and 4,088,864. Passageways of govern size formed by leaching are disclosed in U.S. Pat. Nos. 4,200,098 and 4,285,987.
  • EXAMPLE 13
  • [0023]
    A dosage form adapted, designed and shaped for the oral delivery of hydrocodone to a patient in need of hydrocodone therapy is manufactured as follows: first, 8.00 g of hydrocodone bitartrate hemipentahydrate, 5.50 g of sorbitol, 4.20 g of sodium carboxymethylcellulose possessing a 90,000 molecular weight and 1.00 g of hydroxypropylmethylcellulose of 9,200 molecular weight are screened separately through a 0.0165 inch (0.42 mm) 40 mesh screen. Next, the screened materials are blended on a three roll mill for 20 minutes to produce a homogenous blend. Then, a granulation is prepared by dissolving 1.20 g of poly(vinyl pyrrolidone) having a 40,000 molecular weight and 10 ml of denatured ethyl alcohol with constant stirring to provide a granulation fluid. Then, to all the ingredients on the milling machine, the granulation fluid is slowly added, and all the ingredients blended slowly for 5 minutes, to yield a wet granulation. The wetted mass is then passed through a 0.03331 inch (0.85 mm) 20 mesh screen and air dried at room temperature in a light current of moving air. After drying, the granulation is blended for an additional 2 minutes on a standard roll mill at 50% of its maximum speed. Then, {fraction (5/16)} inch (7.94 mm) round tablets, each comprising 150 mg of the hydrocodone composition are compressed on a Carver® press under a ¼-ton compression force to provide the first layer of a bilayer core. The hydrocodone composition comprises 60.00 mg of hydrocodone bitartrate hemipentahydrate, 41.25 mg of sorbitol, 31.50 mg of sodium carboxymethylcellulose possessing a 90,000 molecular weight 9.00 mg of poly(vinylpyrrolidone) possessing a 40,000 molecular weight, 7.50 mg of hydroxypropylmethylcellulose possessing a 9,200 molecular weight and 0.75 mg of magnesium stearate.
  • [0024]
    A composition for providing a push layer of a bilayer core arrangement is prepared comprising 44.06 mg of sodium carboxymethylcellulose possessing a 700,000 molecular weight, 22.50 mg of sodium chloride, 3.75 mg of hydroxypropylmethylcellulose possessing a 11,200 molecular weight, 0.75 mg of ferric oxide and 0.19 mg of magnesium stearate are used for preparing the push composition. A push granulation is prepared on a fluid bed granulator. A binder solution is made by dissolving hydroxypropylmethylcellulose in water. The binder solution is sprayed on the sodium carboxymethylcellulose 7H possessing a 700,000 molecular weight, the sodium chloride, hydroxypropylmethylcellulose and ferric oxide push-forming blend while the blend is fluidized and the granules are formed in the granulator. After the granulation is dried overnight at room temperature, the blend is remilled in a fluid air mill, and magnesium stearate is added to the mill.
  • [0025]
    The push-forming coposition is compressed into a {fraction (5/16)} inch (7.94 mm) round layer with each layer comprising 75 mg of the push composition using a Carver® press under a compression force of 1⅛-ton to provide the second layer of the bilayer core. The hydrocodone layer and the push layer are coated with a semipermeable wall-forming composition in a 12 inch (30 cm) coater. The semipermeable wall-forming composition comprises a 75:24:1, wt:wt:wt, mixture of cellulose acetate having a 39.8% acetyl content, poly(vinylpyrrolidone) having a 40,000 molecular weight, and triethyl citrate. The wall-forming components are dissolved in a 80:20, wt:wt, mixture of acetone and methanol at 4% solids. The average wet semipermeable wall weighted 36.8 mg. A single 25 mil (0.64 mm) passageway is drilled into each dosage form, and then the dosage forms are dried overnight at 40° celsius. The dosage form exhibited a mean release rate of 8.212 mg/hr over an extended 12 hours of therapy.
  • EXAMPLE 14
  • [0026]
    The procedure of the above example is followed for manufacturing a dosage form, characterized by a hydrocodone layer consisting of 0.5 to 1250 mg of hydrocodone, 10 to 50 mg of sorbitol, 10 to 50 mg of alkali carboxymethylcellulose of 70,000 to 400,000 molecular weight, 5 to 50 mg of hydroxypropylalkylcellulose of 9,000 to 150,000 molecular weight, 0 to 20 mg of poly(vinyl-pyrrolidone) of 10,000 to 140,000 molecular weight, and 0.01 to 5 mg of a lubricant; and a push composition comprising 10 to 60 mg of alkali carboxymethylcellulose of 650,000 to 1,200,000 molecular weight, which is a higher molecular weight then the molecular weight of the alkali carboxymethylcellulose present in the hydrocodone composition, 5 to 75 mg of osmagent, 1 to 30 mg of hydroxypropylmethylcellulose, 0 to 10 mg of ferric oxide, and 0 to 10 mg of lubricant.
  • DISCLOSURE FOR USING THE INVENTION
  • [0027]
    The invention concerns also a method for administering 0.5 mg to 1250 mg of hydrocodone to a patient in need of hydrocodone therapy. The method, in one administration comprises admitting orally into the patient 0.5 mg to 1250 mg of a hydrocodone selected from the group consisting of hydrocodone, and hydrocodone pharmaceutically acceptable salt, which is administered from a therapeutic composition comprising 0.5 mg to 1250 mg of hydrocodone, 10 mg to 350 mg of a poly(alkylene oxide) of 75,000 to 400,000 molecular weight, 5 mg to 50 mg of a hydroxyalkylcellulose of 9,000 to 150,000 molecular weight and 0.01 mg to 5 mg of a lubricant, which composition provides hydrocodone therapy over an extended period of time.
  • [0028]
    The invention concerns further a method for administering 0.5 mg to 1250 mg of hydrocodone by admitting orally 0.5 mg to 1250 mg of hydrocodone to a patient administered from a dosage form comprising a semipermeable wall permeable to aqueous and biological fluid and impermeable to the passage of hydrocodone, which semipermeable wall surrounds an internal compartment comprises a hydrocodone composition and a push composition. The hydrocodone composition consists of the composition above, and the push composition comprises 25 to 300 mg of a poly(alkylene oxide) of 3,000,000 to 7,500,000 molecular weight, 5 mg to 150 mg of an osmagent, 1 to 30 mg of a hydroxypropylmethylcellulose of 9,200 to 175,000 molecular weight, 0 to 10 mg of ferric oxide, 0 to 10 mg of lubricant and 0 to 3.5 mg of an antioxidant; and an exit means in the semipermeable wall for delivering the hydrocodone from the dosage form. The dosage form delivers the hydrocodone by imbibing fluid through the semipermeable wall into the dosage form causing the hydrocodone composition to change from a resting state to a dispensable state, and simultaneously causing the push composition to imbibe fluid, expand and push the hydrocodone composition through the exit, whereby through the combined operations of the dosage form the hydrocodone is delivered at a therapeutically effective dose at a controlled over an extended period of time.
  • [0029]
    Inasmuch as the foregoing specification comprises numerous embodiments, it is understood that variations and modifications can be made herein, in accordance with the principles disclosed, without departing from the invention.
Цитування патентів
Цитований патент Дата реєстрації заявки Дата публікації Заявник Назва
US3845770 *5 чер. 19725 лис. 1974Alza CorpOsmatic dispensing device for releasing beneficial agent
US3916899 *7 лют. 19744 лис. 1975Alza CorpOsmotic dispensing device with maximum and minimum sizes for the passageway
US4111201 *22 лис. 19765 вер. 1978Alza CorporationOsmotic system for delivering selected beneficial agents having varying degrees of solubility
US4111202 *22 лис. 19765 вер. 1978Alza CorporationOsmotic system for the controlled and delivery of agent over time
US4327725 *25 лис. 19804 трав. 1982Alza CorporationOsmotic device with hydrogel driving member
US4464378 *28 квіт. 19817 сер. 1984University Of Kentucky Research FoundationMethod of administering narcotic antagonists and analgesics and novel dosage forms containing same
US4576604 *4 бер. 198318 бер. 1986Alza CorporationOsmotic system with instant drug availability
US4612008 *21 груд. 198416 вер. 1986Alza CorporationOsmotic device with dual thermodynamic activity
US5021053 *14 лип. 19894 чер. 1991Alza CorporationOral osmotic device with hydrogel driving member
US5190765 *26 лис. 19912 бер. 1993Alza CorporationTherapy delayed
US5866161 *15 лип. 19962 лют. 1999Alza CorporationHydrocodone therapy
Посилання з інших патентів
Патент, який цитує Дата реєстрації заявки Дата публікації Заявник Назва
US822697911 квіт. 201124 лип. 2012Alza CorporationDrug coating providing high drug loading and methods for providing the same
US824698623 вер. 200421 сер. 2012Alza CorporationDrug coating providing high drug loading
US854102620 квіт. 200724 вер. 2013Abbvie Inc.Sustained release formulations of opioid and nonopioid analgesics
US880874523 сер. 201319 сер. 2014Egalet Ltd.Morphine polymer release system
US887724126 бер. 20044 лис. 2014Egalet Ltd.Morphine controlled release system
US90056605 лют. 201014 квіт. 2015Egalet Ltd.Immediate release composition resistant to abuse by intake of alcohol
US902339426 чер. 20135 трав. 2015Egalet Ltd.Formulations and methods for the controlled release of active drug substances
US904440210 квіт. 20142 чер. 2015Egalet Ltd.Abuse-deterrent pharmaceutical compositions for controlled release
US913209612 вер. 201415 вер. 2015Alkermes Pharma Ireland LimitedAbuse resistant pharmaceutical compositions
US92269074 лют. 20095 січ. 2016Abbvie Inc.Extended release hydrocodone acetaminophen and related methods and uses thereof
US935829512 бер. 20157 чер. 2016Egalet Ltd.Immediate release composition resistant to abuse by intake of alcohol
US937542825 вер. 201428 чер. 2016Egalet Ltd.Morphine controlled release system
US945216311 вер. 201527 вер. 2016Recro Gainesville LlcAbuse resistant pharmaceutical compositions
US948645111 вер. 20158 лис. 2016Recro Gainesville LlcAbuse resistant pharmaceutical compositions
US964280929 лип. 20149 трав. 2017Egalet Ltd.Controlled release pharmaceutical compositions for prolonged effect
US969408023 сер. 20134 лип. 2017Egalet Ltd.Polymer release system
US970717915 лип. 201418 лип. 2017Egalet Ltd.Opioid polymer release system
US97136113 чер. 201625 лип. 2017Recro Gainesville, LLCAbuse resistant pharmaceutical compositions
US20050089570 *24 вер. 200428 квіт. 2005Evangeline CruzOros push-stick for controlled delivery of active agents
US20050112195 *23 вер. 200426 трав. 2005Evangeline CruzDrug coating providing high drug loading and methods for providing same
US20050158382 *24 вер. 200421 лип. 2005Evangeline CruzControlled release formulations of opioid and nonopioid analgesics
US20060251721 *30 чер. 20069 лис. 2006Evangeline CruzControlled release formulations of opioid and nonopioid analgesics
US20070281018 *20 квіт. 20076 груд. 2007Abbott LaboratoriesSustained release formulations of opioid and nonopioid analgesics
US20090022798 *20 лип. 200722 січ. 2009Abbott Gmbh & Co. KgFormulations of nonopioid and confined opioid analgesics
US20090317355 *26 січ. 200924 груд. 2009Abbott Gmbh & Co. Kg,Abuse resistant melt extruded formulation having reduced alcohol interaction
US20100172989 *4 груд. 20098 лип. 2010Abbott LaboratoriesAbuse resistant melt extruded formulation having reduced alcohol interaction
Класифікації
Класифікація США424/465
Міжнародна класифікаціяA61K9/00, A61K9/20, A61K31/485, A61K9/22
Об’єднана класифікаціяA61K9/0004, A61K9/2054, A61K31/485, A61K9/2031
Європейська класифікаціяA61K9/20H6F2, A61K31/485, A61K9/20H6D, A61K9/00L4
Юридичні події
ДатаКодДіяОпис
12 груд. 2003ASAssignment
Owner name: BANK OF AMERICA, N.A., NORTH CAROLINA
Free format text: SECURITY INTEREST;ASSIGNOR:REMINGTON CORPORATION, L.L.C.;REEL/FRAME:014805/0733
Effective date: 20030930