US20030068276A1 - Dosage forms - Google Patents

Dosage forms Download PDF

Info

Publication number
US20030068276A1
US20030068276A1 US10/016,336 US1633601A US2003068276A1 US 20030068276 A1 US20030068276 A1 US 20030068276A1 US 1633601 A US1633601 A US 1633601A US 2003068276 A1 US2003068276 A1 US 2003068276A1
Authority
US
United States
Prior art keywords
dosage form
pharmaceutical dosage
oral pharmaceutical
abuse
schedule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/016,336
Inventor
Lyn Hughes
Simon Bellamy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Priority to US10/016,336 priority Critical patent/US20030068276A1/en
Priority to EP02256157A priority patent/EP1293195A1/en
Priority to KR1020020054861A priority patent/KR20030024583A/en
Priority to JP2002269709A priority patent/JP2003113074A/en
Publication of US20030068276A1 publication Critical patent/US20030068276A1/en
Priority to US10/679,785 priority patent/US7655256B2/en
Priority to US10/713,926 priority patent/US20040126428A1/en
Assigned to ROHM AND HAAS COMPANY reassignment ROHM AND HAAS COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BELLAMY, SIMON ANDREW, HUGHES, LYN
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core

Definitions

  • parenteral There are three main routes that drug abusers use for administering the drug substances: parenteral, oral, and inhalation.
  • the parenteral route is commonly called ‘mainlining’ and requires the drug substance to be in solution such that it can be injected intravenously with a syringe.
  • solid dosage form drugs this requires some type of extraction and concentration procedure to render the drug substance suitable for injection.
  • Inhalation of a solid drug substance through the nose is commonly called ‘snorting’.
  • solid dosage form drugs this requires only that the dosage form be crushed into a powder, or emptied from a capsule. Breathing in vapors is frequently known as ‘huffing’. Both snorting and huffing result in the rapid absorption of the drug substance through the mucosa of the respiratory system.
  • extended release formulations typically contain more than the immediate release single dose of active ingredient. Circumventing the extended release mechanism delivers the full dose, which is intended to be delivered over a longer time period, immediately. For example, crushing an extended release oxycodone tablet separates a gelling matrix from the oxycodone active ingredient, such that when inhaled through the nose the gelling matrix cannot exert the extended release effect. Similarly it is sometimes possible to circumvent the extended release effect by chewing the dosage form.
  • WO0108661 describes an extended release dosage form of opioids that uses an ion exchange resin. This dosage form is also subject to said modes of abuse because the ion exchange resin and the active ingredient can be separated by crushing.
  • U.S. Pat. Nos. 3,773,955, 3,966,940, and 4,457,933 describe oral dosage forms containing a combination of opioid agonists and antagonists, in which the effect of the antagonist when administered according to the correct procedure does not affect the therapeutic pain management value of the agonist.
  • the agonist and antagonist are extracted for parenteral administration by an addict the effect of the agonist desired by the addict is decreased.
  • This approach was further adopted in WO9004965 where it was incorporated into a transdermal delivery device, and in U.S. Pat. No. 6,228,863 where it was developed into a dosage form from which the agonist could not be separated from the antagonist except by using a sophisticated multi-step procedure.
  • WO0033835 additives are included in the dosage forms such that when added to drinks create a visible change in the drink. This invention reduces the potential for abuse by oral administration of the substance by one person to another without their knowledge.
  • bitter and sour agents to minimize the risk of ingestion of poisonous compounds is well known in the art. For example, see U.S. Pat. No. 3,268,577, GB 2358585, JP 2000026260, and Chemistry and Industry (London), volume 22, 721-723, 1998). In all such cases the purpose of the bitter or sour agent is to prevent ingestion.
  • respiratory mucosal membrane means the mucous membrane lining the nasal and pharyngeal cavities, the bronchial tubes, and the lungs. Typically, snorting into the nasal cavity is the common, preferred route of abuse for a solid oral dosage form which has been crushed by one intending to inhale said crushed dosage form to obtain the high.
  • respiratory irritant means substances that cause irritation when administered to the respiratory mucosal membrane. Said irritation can include, but is not limited to, coughing, dyspnea, rhinitis, nasal congestion, eye irritation, lachrymation, and sneezing.
  • immediate release dosage forms means a dosage form from which the active ingredient is dissolved as quickly as possible after administration.
  • immediate release dosage forms are frequently referred to as “conventional” dosage forms.
  • modified release means a dosage form whose drug-release characteristics of time course and/or location are chosen to accomplish therapeutic or convenience objectives not offered by conventional dosage forms.
  • Said modified release dosage forms include dosage forms commonly known in the art as, delayed, sustained, extended, targeted, prolonged, pulsatile, zero-order, constant rate, and controlled.
  • aversive response means a response in a person, resulting from administration of a dosage form containing a controlled substance, via any of the known routes of administration, sufficiently unpleasant that said person decides not to administer said dosage form by the same route of administration again
  • aversive agent means any substance that is included in a dosage form that creates an aversive response.
  • nociceptive means a response characterized by pain.
  • nociceptive efficacy when applied to an irritant refers to the quantification of the ability of said irritant to cause pain.
  • the present invention relates to an oral pharmaceutical dosage form not susceptible to abuse by respiratory mucosal membrane administration comprising one or more aversive agents.
  • the present invention further relates to an oral pharmaceutical dosage form not susceptible to abuse by chewing comprising one or more aversive agents.
  • the present invention relates to an oral pharmaceutical dosage form not susceptible to abuse by respiratory mucosal membrane administration comprising one or more aversive agents.
  • the present invention further relates to an oral pharmaceutical dosage form not susceptible to abuse by chewing comprising one or more aversive agents.
  • a respiratory irritant such as powdered chili peppers, or concentrated extracts of such products that contain capsaicin or capsaicin-like components, is incorporated into the solid oral dosage form of the controlled substance.
  • said irritant causes no aversive response.
  • the oral dosage form is rendered into a powder and inhaled, said irritant creates intense discomfort in the user, including coughing, dyspnea, rhinitis, nasal congestion, eye irritation, lachrymation, and sneezing. This intense discomfort has the effect of deterring people from using said inhalation route as a means of administration, i.e. it elicits an aversive response.
  • a bitter tasting agent such as denatonium benzoate (Bitr)
  • ex® or a sour tasting agent such as citric acid
  • a sour tasting agent such as citric acid
  • Controlled substances useful in the practice of the invention are those categorized by the DEA as Schedule II, III, IV, and V controlled substances.
  • Schedule II substances include, but are not limited to, 1-1-Phenylcyclohexylamine, 1-Piperidinocyclohexanecarbonitrile, Alfentanil, Alphaprodine, Amobarbital, Amphetamine, Anileridine, Benzoylecgonine, Bezitramide, Carfentanil, Coca Leaves, Cocaine, Codeine, Dextropropoxyphene, Dihydrocodeine, Diphenoxylate, Diprenorphine, Ecgonine, Ethylmorphine, Etorphine HCl, Fentanyl, Glutethimide, Hydrocodone, Hydromorphone, Isomethadone, Levo-alphacetylmethadol, Levomethorphan, Levorphanol, Meperidine, Meperidine intermediate-A, Meperidine intermediate-B, Meperidine intermediate-C, Metazocine, Methadone, Methadone intermediate, Methamphetamine, Methylphenidate, Me
  • Schedule III substances include, but are not limited to, Amobarbital, Anabolic steroids, Aprobarbital, Barbituric acid derivative, Benzphetamine, Boldenone, Butabarbital, Butalbital, Chlorhexadol, Chlorotestosterone, Chlorphentermine, Clortermine, Clostebol, Codeine, Dehydrochlormethyltestosterone, Dihydrocodeine, Dihydrotestosterone, Dronabinol, Drostanolone, Ethylestrenol, Ethylmorphine, Fluoxymesterone, Formebolone, Hydrocodone, Ketamine, Lysergic acid, Lysergic acid amide, Mesterolone, Methandienone, Methandranone, Methandriol, Methandrostenolone, Methenolone, Methyltestosterone, Methyprylon, Mibolerone, Morphine, Nalorphine, Nandrolone, Norethand
  • Schedule IV substances include, but are not limited to, Alprazolam, Barbital, Bromazepam, Butorphanol, Camazepam, Cathine, Chloral betaine, Chloral hydrate, Chlordiazepoxide, Clobazam, Clonazepam, Clorazepate, Clotiazepam, Cloxazolam, Cocaine, Delorazepam, Dexfenfluramine, Dextropropoxyphene, Diazepam, Diethylpropion, Difenoxin, Estazolam, Ethchlorvynol, Ethinamate, Ethyl loflazepate, Fencamfamin, Fenfluramine, Fenproporex, Fludiazepam, Flunitrazepam, Flurazepam, Halazepam, Haloxazolam, Ketazolam, Loprazolam, Lorazepam, Lormetazepam, Mazindol
  • Schedule V substances include, but are not limited to Buprenorphine, Difenoxin, Dihydrocodeine, Diphenoxylate, Pyrovalerone.
  • Preferred controlled substances useful in the practice of the invention are those categorized by the DEA as Schedule II, III, and IV controlled substances.
  • More preferred controlled substance useful in the practice of the invention are those categorized by the DEA as Schedule II and III controlled substances.
  • Most preferred controlled substance useful in the practice of the invention are those categorized by the DEA as Schedule II controlled substances.
  • the most preferred Schedule II substance is oxycodone.
  • Aversive agents useful in the practice of this invention include, but are not limited to, respiratory irritants, bitter substances, and sour substances.
  • Aversive agents useful in the practice of this invention are solids. Said solid can be said agent in pure form or a solid containing said agent.
  • Aversive agents useful in the practice of this invention are of natural or synthetic origin.
  • capsaicinoids are alkaloid substances which occur naturally in the fruit of various chile pepper plants.
  • the principal capsaicinoids found in most pepper plants are capsaicin, dihydrocapsaicin, capsico, and capsacutin.
  • the principal capsaicinoid is capsaicin.
  • the production of capsaicinoids is a form of chemical defense against being eaten and thus acts naturally as an animal repellant. See, Smith, R. L., Ecology and Field Biology, p.
  • Capsaicinoids are the chemicals responsible for the “hot” sensation associated with peppers. The hotness of the various capsicums is directly attributable to their capsaicinoid content. Capsaicinoids generate a spicy flavor in the mouth but are irritants when applied to mucous membranes.
  • Capsicum is the formal term used to refer to the dried ripe fruit of the various species of chili peppers.
  • capsaicin is listed as a counterirritant (Merck Index, 9th Ed., p. 224).
  • Capsicum has Generally Regarded as Safe (GRAS) status in the USA.
  • GRAS Generally Regarded as Safe
  • Capsaicin, capsicum, and capsicum oleoresin have monographs in the US Pharmacopeia 24.
  • Respiratory irritants useful in the practice of this invention include, but are not limited to, pure compounds and mixtures of capsaicin, capsico, capsacutin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, chemical mace, piperine, isochavicine, isopiperine, piperidine, chavicine, piperettine, zingerone, shogaol, valleral, isovallerals, vanyllylamide, nonoyl vanyllamide, vanyllylamide derivatives, synthetic derivatives of capsaicinoids, and extracts, capsicums, and powders of, Capsicum frutescens varieties, Capsicum anuum varieties, Capsicum chinense varieties, Capsicum baccatum varieties, Capsicum pubescens varieties, Capsicum species, Piper migrum varieties
  • Preferred respiratory irritants useful in the practice of the invention are pure compounds and mixtures of capsaicin, capsico, capsacutin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, chemical mace, piperine, isochavicine, isopiperine, piperidine, chavicine, piperettine, zingerone, shogaol, valleral, isovallerals, vanyllylamide, nonoyl vanyllamide, vanyllylamide derivatives, synthetic derivatives of capsaicinoids, and extracts, capsicums, and powders of, Capsicum frutescens varieties, Capsicum anuum varieties, Capsicum chinense varieties, Piper migrum varieties, Piper longum varieties, Piper retrofractum varieties, Piper officinarum varieties, Brassica juncea varieties, Brassica.
  • More preferred respiratory irritants useful in the practice of the invention are pure compounds and mixtures of capsaicin, capsico, capsacutin dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, piperine, isopiperine, piperidine, piperettine, zingerone, shogaol, valleral, isovallerals, vanyllylamide, vanyllylamide derivatives, and extracts, capsicums, and powders of, Capsicum frutescens varieties, Capsicum anuum varieties, Capsicum chinense varieties, Piper migrum varieties, Piper longum varieties, Piper retrofractum varieties, Piper officinarum varieties, Brassica juncea varieties, Brassica. nigra varieties, Sinapis alba varieties, Sinapis arvensis varieties, and Zingiber officinale varieties and mixture
  • Most preferred respiratory irritants useful in the practice of the invention are pure compounds and mixtures of capsaicin, capsacutin dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, piperine, isopiperine, zingerone, shogaol, and vanyllylamide derivatives and mixtures thereof.
  • the amount of respiratory irritant useful in the practice of this invention is that which is sufficient to elicit an aversive response in the user when said irritant is inhaled through the respiratory mucosa but that which is not sufficient to elicit an aversive response or an adverse medical response in the user when said irritant is swallowed as a solid oral dosage form in the manner prescribed.
  • the nociceptive efficacy of the respiratory irritants varies greatly depending both on chemical structure of the active ingredient of said irritant, and the amount of active ingredient in said irritant.
  • the following amounts of respiratory irritants are provided as examples. Effective amounts of other respiratory irritants can be determined using techniques well known to those skilled in the art.
  • the preferred amount of the respiratory irritants capsaicin and dihydrocapsaicin is a combined total of 0.002-100 mg per dose.
  • the preferred amount of the respiratory irritant zingerone is 0.04-200 mg per dose.
  • the preferred amount of the respiratory irritant shogaol is 0.04-200 mg per dose
  • the preferred amount of the respiratory irritant piperine is 0.04-200 mg per dose
  • the preferred amount of the respiratory irritants capsicums of Capsicum annum, Capsicum frutescens, and Capsicum chinense is 0.1-450 mg per dose.
  • the more preferred amount of the respiratory irritants capsaicin and dihydrocapsiacin is a combined total of 0.004-25 mg per dose.
  • the more preferred amount of the respiratory irritant piperine is 0.2-150 mg per dose
  • the more preferred amount of the respiratory irritants capsicums of Capsicum annum, Capsicum frutescens, and Capsicum chinense is 0.4-350 mg per dose
  • the most preferred amount of the respiratory irritants capsaicin and dihydrocapsiacin is a combined total of 0.02-15 mg per dose.
  • the most preferred amount of the respiratory irritant piperine is 0.2-100 mg per dose
  • the most preferred amount of the respiratory irritants capsicums of Capsicum annum, Capsicum frutescens, and Capsicum chinense is 0.6-250 mg per dose
  • bitter agents also create an aversive response.
  • the use of bitter agents is particularly useful in preventing abuse of controlled substances by chewing the oral dosage form.
  • Bitter agents useful in the practice of this invention include, but are not limited to, agaricic acid, benzyl acetate, brucine, brucine sulfate, caffeine, capsaicin, catechin, dadzein, denatonium benzoate (Bitrex®) and other denatonium salts, denatonium capsaicinate, denatonium chloride, denatonium saccharide, diethyl phthalate, epicatechin, genistein, gentian violet, gerianol, hydroxytyrosol, kashin, limonin, linalool, linalool acetate, methyl anthranilate, naringin, nobiletin, oleuropin, phenylethyl alcohol, polyphenols, quassin, quebracho, quer
  • Preferred bitter agents useful in the practice of this invention are, denatonium benzoate (Bitrex®) and other denatonium salts, denatonium capsaicinate, denatonium chloride, denatonium saccharide, limonin, linalool, linalool acetate, naringin, quassin, quercitin, sucrose benzoate, and sucrose octaacetate and mixtures thereof.
  • bitter agents useful in the practice of this invention are denatonium benzoate (Bitrex®), denatonium capsaicinate, denatonium saccharide, and sucrose octaacetate and mixtures thereof.
  • sour agents also create an aversive response.
  • the use of sour agents is particularly useful in preventing abuse of controlled substances by chewing the oral dosage form.
  • Sour agents useful in the practice of this invention include, but are not limited to, acidic organic compounds that contain one or more acidic protons per molecule and mixtures thereof.
  • Preferred sour agent useful in the practice of the invention are acidic organic compounds that contain two or more acidic protons per molecule and mixtures thereof.
  • Most preferred sour agents useful in the practice of the invention are citric acid and tartaric acid and mixtures thereof.
  • controlled substance and aversive agent are incorporated into the dosage form using any of the methods known in the art for preparation of solid oral dosage forms. See, Remington's Pharmaceutical Sciences, 16 th Edition.
  • aversive agents can be combined in the same dosage form. For example, if it is desired to reduce the potential for abuse via both inhalation and chewing, it may be desirable to combine both a respiratory irritant and a bitter agent in the same formulation. Further, combination of avervise agents can sometime have a synergistic effect, such that the combination has a greater effect than the sum of the individuals taken separately. Still further, people have different responses to taste, such that a mixture of bitter agents may be needed to be effective in a larger fraction of the population.
  • excipients are used in the manufacture of the oral dosage forms of the present invention.
  • Excipients useful in the practice if this invention include but are not limited to preservatives, viscosity agents, fillers, lubricants, glidants, disintegrants, binders, and encapsulants.
  • Preferred preservatives include, but are not limited to, phenol, alkyl esters of parahydroxybenzoic acid, o-phenylphenol benzoic acid and the salts thereof, boric acid and the salts thereof, sorbic acid and the salts thereof, chlorobutanol, benzyl alcohol, thimerosal, phenylmercuric acetate and nitrate, nitromersol, benzalkonium chloride, cetylpyridinium chloride, methyl paraben, and propyl paraben. Particularly preferred are the salts of benzoic acid, cetylpyridinium chloride, methyl paraben and propyl paraben.
  • the compositions of the present invention generally include from 0-2% preservatives.
  • Preferred viscosity agents include, but are not limited to, methylcellulose, sodium carboxymethylcellulose, hydroxypropyl-methylcellulose, hydroxypropylcellulose, sodium alginate, carbomer, povidone, acacia, guar gum, xanthan gum and tragacanth. Particularly preferred are methylcellulose, carbomer, xanthan gum, guar gum, povidone, sodium carboxymethylcellulose, and magnesium aluminum silicate.
  • Compositions of the present invention include 0-25% viscosity agents.
  • Preferred fillers include, but are not limited to, lactose, mannitol, sorbitol, tribasic calcium phosphate, dibasic calcium phosphate, compressible sugar, starch, calcium sulfate, dextro and microcrystalline cellulose.
  • the compositions of the present invention contain from 0-75% fillers.
  • Preferred lubricants include, but are not limited to, magnesium stearate, stearic acid, and talc.
  • the pharmaceutical compositions of the present invention include 0-2% lubricants.
  • Preferred glidants include, but are not limited to, talc and colloidal silica.
  • the compositions of the present invention include from 0-5% glidants.
  • Preferred disintegrants include, but are not limited to, starch, sodium starch glycolate, crospovidone, croscarmelose sodium, polacrilin potassium, and microcrystalline cellulose.
  • the pharmaceutical compositions of the present invention include from 0-30% disintegrants.
  • Preferred binders include, but are not limited to, acacia, tragacanth, hydroxypropylcellulose, pregelatinized starch, gelatin, povidone, hydroxypropylcellulose, hydroxypropyl-methylcellulose, methylcellulose, sugar solutions, such as sucrose and sorbitol, and ethylcellulose.
  • the compositions of the present invention include 0.1-10% binders.
  • Encapsulants useful in the practice of the present invention include, but are not limited to permable coatings, impermeable coatings, and matrices.
  • Permeable coatings useful in this invention are well know to one skilled in the art and include Eudragit® RL, and Eudragit® RS (Rohm-Pharma Darmstadt, Germany)
  • Non-permeable coatings useful in this invention are well known to one skilled in the art and include Aquacoat CPD (FMC Corporation, Philadelphia, Pa., USA), Eudragit® E100, Eudragit® L100, Eudragit® S100 (Rohm-Pharma Darmstadt, Germany), Kollicoat® MA 30 DP (BASF Aktiengesellschaft, Ludwigshafen, Germany), Opadry light pink.
  • Plastizers for use with coatings useful in the practice of the invention include but are not limited to, triethyl citrate, 1,2-propylene glycol, polyethylene glycols, and tracetin.
  • Matrices for encapsulation useful in the practice of the invention include, but are not limited to, anion exchange resins, cation exchange resins, polymeric adsorbents, carbonaceous adsorbents, cellulosic polymers, and acrylic polymers.
  • Dosage forms of the present invention are immediate release or modified release.
  • oxycodone hydrochloride a Schedule II controlled substance, spray-dried lactose, capsaicin, and Eudragit® RS PM are placed into an appropriately-sized mixer, and mixed for approximately 5 minutes. While the powders are mixing, the mixture is granulated with enough water to produce a moist granular mass. The granules are then dried in a fluid bed dryer at 60° C., and then passed through an 8-mesh screen. Thereafter, the granules are redried and pushed through a 12-mesh screen. The required quantity of stearyl alcohol is melted at approximately 60-70° C., and while the granules are mixing, the melted stearyl alcohol is added. The warm granules are returned to the mixer.
  • the coated granules are removed from the mixer and allowed to cool.
  • the granules are then passed through a 12-mesh screen.
  • the granulate is then lubricated by mixing the required quantity of talc and magnesium stearate in a suitable blender. Tablets are compressed to 375 mg in weight on a suitable tableting machine.
  • Morphine sulfate, a Schedule II controlled substance, capsaicin, and lactose are intimately mixed in a suitable mixer.
  • a granulation is then prepared by incorporating the granulating fluid into the mixing powders using Eudragit® RL.
  • the granulate is then dried and passed through a 12 mesh screen.
  • the stearyl alcohol is melted and incorporated into the warm granules using a suitable mixer. After cooling, the granules are passed through a 12 mesh screen.
  • the granules are then lubricated by mixing in the talc and stearyl alcohol. Tablets are then compressed on a suitable tabletting machine using round biconvex tooling 10/32′′ in diameter.
  • Hydromorphone beads are prepared by dissolving hydromorphone HCl, a Schedule II controlled substance, in water, adding Opadry Y-5-1442 and mixing for about 1 hour to obtain a 20% w/w suspension. This suspension is then sprayed onto Nu-Pareil® 18/20 mesh beads using a Wurster insert.
  • the loaded hydromorphone beads are then overcoated with a 5% w/w gain of Opadry Light Pink using a Wurster insert. This overcoat is applied as a protective coating.
  • the hydromorphone beads are then coated with a 5% weight gain of a retardant coating mixture of Eudragit® RS 30D and Eudragit® RL 30D at a ratio of 90:10, RS to RL.
  • a retardant coating mixture of Eudragit® RS 30D and Eudragit® RL 30D at a ratio of 90:10, RS to RL.
  • the addition of Triethyl Citrate and Talc is also included in the Eudragit suspension.
  • the Wurster insert is used to apply the coating suspension.
  • the hydromorphone beads are given a final overcoat of Opadry Light Pink to a 5% weight gain using a Wurster insert. This overcoat is also applied as a protective coating.
  • the hydromorphone beads are cured in a 45° C. oven for 2 days.
  • the beads are mixed with shogaol in a suitable mixer and the mixture is then hand filled in size #2 clear gelatin capsules.
  • Tablets are prepared as described in Example 1, except that the respiratory irritiant used is piperine, and the quantities used are as follows: Ingredient mg/tablet Oxycodone HCl 30 Lactose 138.75 Eudragit ® RS 45 PM Purified water as needed Stearyl alcohol 75 Talc 7.5 Magnesium 3.75 stearate Piperine 75
  • a Caucasian female, age 27, weighing 50 kg suffering from back pain takes a 30 mg tablet of sustained release oxycodone from Example 1 as prescribed, by swallowing said tablet whole. She experiences 15 hours of pain relief without any aversive response.
  • a Caucasian male recreational drug user age 45, weighing 80 kg crushes a 30 mg tablet of sustained release oxycodone from Example 1 to give a powder. He then inhales said powder through the nose. He immediately experiences an aversive response, including an intense burning sensation in the nasal passages, sneezing, watery eyes and headache.
  • An Asian female, recreational drug user aged 28, weighing 55 kg, breaks an 8 mg hydromorhone capsule from Example 3 and empties out the contents from the capsule. She crushes the beads into a fine powder and then inhales said powder through the nose. She immediately experiences an aversive response, including an intense burning sensation in the nasal passages and the throat, coughing, and watery eyes.

Abstract

Solid oral dosage forms of controlled substances containing aversive agents are useful in reducing abuse by chewing or inhaling.

Description

  • This application claims benefit to provisional application No. 60/322,624 filed Sep. 17, 2001.[0001]
  • BACKGROUND
  • Abuse of controlled substances is a serious and growing problem throughout the world. For example, the abuse of an extended release form of oxycodone has been the recent subject of many articles such as ‘Playing With Pain Killers’ and ‘How One Town Got Hooked’. See, Newsweek, Apr. 9, 2001, pages 45-51. Further, The New York Times profiled the problem of oxycodone abuse by inhalation of the crushed pill. See, The New York Times, Jul. 29, 2001. It is estimated that in America four million people over the age of 12 used prescription painkillers and stimulants for non-medical reasons in the space of just one month, approximately half of them saying they'd done it for the first time. Emergency room visits related to such abuse approximately doubled between 1992 and 1999. [0002]
  • There are three main routes that drug abusers use for administering the drug substances: parenteral, oral, and inhalation. The parenteral route is commonly called ‘mainlining’ and requires the drug substance to be in solution such that it can be injected intravenously with a syringe. For solid dosage form drugs this requires some type of extraction and concentration procedure to render the drug substance suitable for injection. Inhalation of a solid drug substance through the nose is commonly called ‘snorting’. For solid dosage form drugs this requires only that the dosage form be crushed into a powder, or emptied from a capsule. Breathing in vapors is frequently known as ‘huffing’. Both snorting and huffing result in the rapid absorption of the drug substance through the mucosa of the respiratory system. [0003]
  • The potential for abuse is increased by the use of extended release formulations because they typically contain more than the immediate release single dose of active ingredient. Circumventing the extended release mechanism delivers the full dose, which is intended to be delivered over a longer time period, immediately. For example, crushing an extended release oxycodone tablet separates a gelling matrix from the oxycodone active ingredient, such that when inhaled through the nose the gelling matrix cannot exert the extended release effect. Similarly it is sometimes possible to circumvent the extended release effect by chewing the dosage form. [0004]
  • The use of coatings to extend the release of drug substances is very well known in the art (Remington's Pharmaceutical Sciences, 16[0005] th Edition, Chapter 90). Such dosage forms are also subject to said modes of abuse because the coating can be damaged by crushing or chewing.
  • WO0108661 describes an extended release dosage form of opioids that uses an ion exchange resin. This dosage form is also subject to said modes of abuse because the ion exchange resin and the active ingredient can be separated by crushing. [0006]
  • Various methods have been used to reduce the potential for abuse of controlled substances. These methods have focussed on the parenteral and oral routes of administration. [0007]
  • U.S. Pat. Nos. 3,773,955, 3,966,940, and 4,457,933 describe oral dosage forms containing a combination of opioid agonists and antagonists, in which the effect of the antagonist when administered according to the correct procedure does not affect the therapeutic pain management value of the agonist. However, when the agonist and antagonist are extracted for parenteral administration by an addict the effect of the agonist desired by the addict is decreased. This approach was further adopted in WO9004965 where it was incorporated into a transdermal delivery device, and in U.S. Pat. No. 6,228,863 where it was developed into a dosage form from which the agonist could not be separated from the antagonist except by using a sophisticated multi-step procedure. [0008]
  • In U.S. Pat. No. 3,980,766 multiple methods for reducing abuse potential are described. One method is to include a thickening agent such that the concentrated extract containing the drug can not be injected with a syringe. Another is the incorporation of agents that cause the precipitation of the drug during isolation, thus rendering it unsuitable for injection. The addition of a thickener has also been used in U.S. Pat. No. 4,070,494, WO9107950, and WO9520947. [0009]
  • In WO0033835 additives are included in the dosage forms such that when added to drinks create a visible change in the drink. This invention reduces the potential for abuse by oral administration of the substance by one person to another without their knowledge. [0010]
  • The use of bitter and sour agents to minimize the risk of ingestion of poisonous compounds is well known in the art. For example, see U.S. Pat. No. 3,268,577, GB 2358585, JP 2000026260, and Chemistry and Industry (London), volume 22, 721-723, 1998). In all such cases the purpose of the bitter or sour agent is to prevent ingestion. [0011]
  • However, none of the cited references solve the problem of potential abuse of therapeutic compounds via inhalation or chewing. Now, Applicants have surprisingly discovered a dosage form useful in reducing the potential for drug abuse via inhalation or chewing. [0012]
  • The term “high,” as used herein means the non-therapeutic effect desired by drug addicts and recreational drug users [0013]
  • The term “respiratory mucosal membrane” as used herein means the mucous membrane lining the nasal and pharyngeal cavities, the bronchial tubes, and the lungs. Typically, snorting into the nasal cavity is the common, preferred route of abuse for a solid oral dosage form which has been crushed by one intending to inhale said crushed dosage form to obtain the high. [0014]
  • The term “respiratory irritant’ as use herein means substances that cause irritation when administered to the respiratory mucosal membrane. Said irritation can include, but is not limited to, coughing, dyspnea, rhinitis, nasal congestion, eye irritation, lachrymation, and sneezing. [0015]
  • When describing dosage forms the term “immediate release” as used herein means a dosage form from which the active ingredient is dissolved as quickly as possible after administration. In the pharmaceutical arts said immediate release dosage forms are frequently referred to as “conventional” dosage forms. [0016]
  • When describing dosage forms the term “modified release” as used herein means a dosage form whose drug-release characteristics of time course and/or location are chosen to accomplish therapeutic or convenience objectives not offered by conventional dosage forms. Said modified release dosage forms include dosage forms commonly known in the art as, delayed, sustained, extended, targeted, prolonged, pulsatile, zero-order, constant rate, and controlled. [0017]
  • The term “aversive response” as used herein means a response in a person, resulting from administration of a dosage form containing a controlled substance, via any of the known routes of administration, sufficiently unpleasant that said person decides not to administer said dosage form by the same route of administration again [0018]
  • The term “aversive agent” as used herein means any substance that is included in a dosage form that creates an aversive response. [0019]
  • The term “nociceptive” as used herein means a response characterized by pain. For example the term ‘nociceptive efficacy’ when applied to an irritant refers to the quantification of the ability of said irritant to cause pain. [0020]
  • SUMMARY OF THE INVENTION
  • The present invention relates to an oral pharmaceutical dosage form not susceptible to abuse by respiratory mucosal membrane administration comprising one or more aversive agents. [0021]
  • The present invention further relates to an oral pharmaceutical dosage form not susceptible to abuse by chewing comprising one or more aversive agents. [0022]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to an oral pharmaceutical dosage form not susceptible to abuse by respiratory mucosal membrane administration comprising one or more aversive agents. [0023]
  • The present invention further relates to an oral pharmaceutical dosage form not susceptible to abuse by chewing comprising one or more aversive agents. [0024]
  • In the practice of one embodiment of the invention, a respiratory irritant such as powdered chili peppers, or concentrated extracts of such products that contain capsaicin or capsaicin-like components, is incorporated into the solid oral dosage form of the controlled substance. When the oral dosage form is used as prescribed, i.e. swallowed whole, said irritant causes no aversive response. However, if the oral dosage form is rendered into a powder and inhaled, said irritant creates intense discomfort in the user, including coughing, dyspnea, rhinitis, nasal congestion, eye irritation, lachrymation, and sneezing. This intense discomfort has the effect of deterring people from using said inhalation route as a means of administration, i.e. it elicits an aversive response. [0025]
  • In the practice of another embodiment of the invention, a bitter tasting agent such as denatonium benzoate (Bitr [0026]
  • ex®) or a sour tasting agent such as citric acid, is incorporated into the solid oral dosage form of the controlled substance. When the oral dosage form is used as prescribed, i.e. swallowed whole, said bitter or sour substance causes no aversive response. However, if the oral dosage form is chewed, said bitter or sour substance creates an intensely unpleasant taste. This unpleasant taste has the effect of deterring people from chewing the dosage form, i.e. it elicits an aversive response. [0027]
  • The Controlled Substances Act of 1970 regulates the manufacturing, distribution, and dispensing of drugs that have abuse potential. The Drug Enforcement Agency (DEA) within the US Department of Justice is the chief agency responsible for enforcing said act. Drugs under the jurisdiction of said Act are divided into five schedules (I thru V) based on their medical utility, potential for abuse, and physical and psychological dependence. Schedule I substances have high abuse potential and no accepted medical use. Schedule II also have high abuse potential, but also have medical utility. Schedules III, IV, and V have progressively lower abuse potential. [0028]
  • Because the DEA rates abuse potential based on specific dosage forms it is not uncommon for a drug to be rated in multiple schedules. For example codeine appears as Schedule II, Schedule III, and Schedule IV, depending on the specific dosage form and dosage amount. To avoid duplication in the list of controlled substance below, multiple occurrences have been removed and any controlled substance that had multiple occurrences is placed in the highest abuse potential category for which is has been scheduled. For example, codeine has been included as Schedule II, but not Schedule III or Schedule IV. This is not intended to limit the scope of the invention. The utility of the Applicant's invention lies in the fact that any controlled substance, regardless of what schedule it appears on, is suitable for formulating into the Applicant's dosage form. [0029]
  • Controlled substances useful in the practice of the invention are those categorized by the DEA as Schedule II, III, IV, and V controlled substances. [0030]
  • Schedule II substances include, but are not limited to, 1-1-Phenylcyclohexylamine, 1-Piperidinocyclohexanecarbonitrile, Alfentanil, Alphaprodine, Amobarbital, Amphetamine, Anileridine, Benzoylecgonine, Bezitramide, Carfentanil, Coca Leaves, Cocaine, Codeine, Dextropropoxyphene, Dihydrocodeine, Diphenoxylate, Diprenorphine, Ecgonine, Ethylmorphine, Etorphine HCl, Fentanyl, Glutethimide, Hydrocodone, Hydromorphone, Isomethadone, Levo-alphacetylmethadol, Levomethorphan, Levorphanol, Meperidine, Meperidine intermediate-A, Meperidine intermediate-B, Meperidine intermediate-C, Metazocine, Methadone, Methadone intermediate, Methamphetamine, Methylphenidate, Metopon, Moramide-intermediate, Morphine, Nabilone, Opium extracts, Opium fluid extract, Opium poppy, Opium tincture, Opium, granulated, Opium, powdered, Opium, raw, Oxycodone, Oxymorphone, Pentobarbital, Phenazocine, Phencyclidine, Phenmetrazine, Phenylacetone, Piminodine, Poppy Straw, Poppy Straw Concentrate, Racemethorphan, Racemorphan, Remifentanil, Secobarbital, Sufentanil, Thebaine [0031]
  • Schedule III substances include, but are not limited to, Amobarbital, Anabolic steroids, Aprobarbital, Barbituric acid derivative, Benzphetamine, Boldenone, Butabarbital, Butalbital, Chlorhexadol, Chlorotestosterone, Chlorphentermine, Clortermine, Clostebol, Codeine, Dehydrochlormethyltestosterone, Dihydrocodeine, Dihydrotestosterone, Dronabinol, Drostanolone, Ethylestrenol, Ethylmorphine, Fluoxymesterone, Formebolone, Hydrocodone, Ketamine, Lysergic acid, Lysergic acid amide, Mesterolone, Methandienone, Methandranone, Methandriol, Methandrostenolone, Methenolone, Methyltestosterone, Methyprylon, Mibolerone, Morphine, Nalorphine, Nandrolone, Norethandrolone, Oxandrolone, Oxymesterone, Oxymetholone, Pentobarbital, Phendimetrazine, Secobarbital, Stanolone, Stanozolol, Sulfondiethylmethane, Sulfonethylmethane, Sulfonmethane, Talbutal, Testolactone, Testosterone, Thiamylal, Thiopental, Tiletamine, Trenbolone, Vinbarbital. [0032]
  • Schedule IV substances include, but are not limited to, Alprazolam, Barbital, Bromazepam, Butorphanol, Camazepam, Cathine, Chloral betaine, Chloral hydrate, Chlordiazepoxide, Clobazam, Clonazepam, Clorazepate, Clotiazepam, Cloxazolam, Cocaine, Delorazepam, Dexfenfluramine, Dextropropoxyphene, Diazepam, Diethylpropion, Difenoxin, Estazolam, Ethchlorvynol, Ethinamate, Ethyl loflazepate, Fencamfamin, Fenfluramine, Fenproporex, Fludiazepam, Flunitrazepam, Flurazepam, Halazepam, Haloxazolam, Ketazolam, Loprazolam, Lorazepam, Lormetazepam, Mazindol, Mebutamate, Medazepam, Mefenorex, Meprobamate, Methohexital, Methylphenobarbital, Midazolam, Modafinil, Nimetazepam, Nitrazepam, Nordiazepam, Oxazepam, Oxazolam, Paraldehyde, Pemoline, Pentazocine, Petrichloral, Phenobarbital, Phentermine, Pinazepam, Pipradrol, Prazepam, Quazepam, Sibutramine, Temazepam, Tetrazepam, Triazolam, Zaleplon, Zolpidem [0033]
  • Schedule V substances include, but are not limited to Buprenorphine, Difenoxin, Dihydrocodeine, Diphenoxylate, Pyrovalerone. [0034]
  • Preferred controlled substances useful in the practice of the invention are those categorized by the DEA as Schedule II, III, and IV controlled substances. [0035]
  • More preferred controlled substance useful in the practice of the invention are those categorized by the DEA as Schedule II and III controlled substances. [0036]
  • Most preferred controlled substance useful in the practice of the invention are those categorized by the DEA as Schedule II controlled substances. The most preferred Schedule II substance is oxycodone. [0037]
  • Aversive agents useful in the practice of this invention include, but are not limited to, respiratory irritants, bitter substances, and sour substances. [0038]
  • Aversive agents useful in the practice of this invention are solids. Said solid can be said agent in pure form or a solid containing said agent. [0039]
  • Aversive agents useful in the practice of this invention are of natural or synthetic origin. [0040]
  • An important aspect of this invention is the use of capsaicinoids as an aversive agent which acts as a respiratory irritant to create an aversive response. Capsaicinoids are alkaloid substances which occur naturally in the fruit of various chile pepper plants. The principal capsaicinoids found in most pepper plants are capsaicin, dihydrocapsaicin, capsico, and capsacutin. The principal capsaicinoid is capsaicin. There can be multiple capsaicinoids in one pepper and different peppers have different concentrations of capsaicinoids. The production of capsaicinoids is a form of chemical defense against being eaten and thus acts naturally as an animal repellant. See, Smith, R. L., Ecology and Field Biology, p. 562 (3d Ed. 1980). Capsaicinoids are the chemicals responsible for the “hot” sensation associated with peppers. The hotness of the various capsicums is directly attributable to their capsaicinoid content. Capsaicinoids generate a spicy flavor in the mouth but are irritants when applied to mucous membranes. [0041]
  • Capsicum is the formal term used to refer to the dried ripe fruit of the various species of chili peppers. [0042]
  • Therapeutically, capsaicin is listed as a counterirritant (Merck Index, 9th Ed., p. 224). Capsicum has Generally Regarded as Safe (GRAS) status in the USA. Capsaicin, capsicum, and [0043] capsicum oleoresin have monographs in the US Pharmacopeia 24.
  • Respiratory irritants useful in the practice of this invention include, but are not limited to, pure compounds and mixtures of capsaicin, capsico, capsacutin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, chemical mace, piperine, isochavicine, isopiperine, piperidine, chavicine, piperettine, zingerone, shogaol, valleral, isovallerals, vanyllylamide, nonoyl vanyllamide, vanyllylamide derivatives, synthetic derivatives of capsaicinoids, and extracts, capsicums, and powders of, [0044] Capsicum frutescens varieties, Capsicum anuum varieties, Capsicum chinense varieties, Capsicum baccatum varieties, Capsicum pubescens varieties, Capsicum species, Piper migrum varieties, Piper longum varieties, Piper retrofractum varieties, Piper officinarum varieties, Piperaceae species, Brassica juncea varieties, Brassica. nigra varieties, Sinapis alba varieties, Sinapis arvensis varieties, Zingiber officinale varieties, and Lactarius vellereus varieties and mixtures thereof.
  • Preferred respiratory irritants useful in the practice of the invention are pure compounds and mixtures of capsaicin, capsico, capsacutin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, chemical mace, piperine, isochavicine, isopiperine, piperidine, chavicine, piperettine, zingerone, shogaol, valleral, isovallerals, vanyllylamide, nonoyl vanyllamide, vanyllylamide derivatives, synthetic derivatives of capsaicinoids, and extracts, capsicums, and powders of, [0045] Capsicum frutescens varieties, Capsicum anuum varieties, Capsicum chinense varieties, Piper migrum varieties, Piper longum varieties, Piper retrofractum varieties, Piper officinarum varieties, Brassica juncea varieties, Brassica. nigra varieties, Sinapis alba varieties, Sinapis arvensis varieties, and Zingiber officinale varieties and mixtures thereof.
  • More preferred respiratory irritants useful in the practice of the invention are pure compounds and mixtures of capsaicin, capsico, capsacutin dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, piperine, isopiperine, piperidine, piperettine, zingerone, shogaol, valleral, isovallerals, vanyllylamide, vanyllylamide derivatives, and extracts, capsicums, and powders of, [0046] Capsicum frutescens varieties, Capsicum anuum varieties, Capsicum chinense varieties, Piper migrum varieties, Piper longum varieties, Piper retrofractum varieties, Piper officinarum varieties, Brassica juncea varieties, Brassica. nigra varieties, Sinapis alba varieties, Sinapis arvensis varieties, and Zingiber officinale varieties and mixtures thereof.
  • Most preferred respiratory irritants useful in the practice of the invention are pure compounds and mixtures of capsaicin, capsacutin dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, piperine, isopiperine, zingerone, shogaol, and vanyllylamide derivatives and mixtures thereof. [0047]
  • The use of capsaicin with cocaine is contra-indicated. [0048]
  • The amount of respiratory irritant useful in the practice of this invention is that which is sufficient to elicit an aversive response in the user when said irritant is inhaled through the respiratory mucosa but that which is not sufficient to elicit an aversive response or an adverse medical response in the user when said irritant is swallowed as a solid oral dosage form in the manner prescribed. [0049]
  • The nociceptive efficacy of the respiratory irritants varies greatly depending both on chemical structure of the active ingredient of said irritant, and the amount of active ingredient in said irritant. The following amounts of respiratory irritants are provided as examples. Effective amounts of other respiratory irritants can be determined using techniques well known to those skilled in the art. [0050]
  • The preferred amount of the respiratory irritants capsaicin and dihydrocapsaicin is a combined total of 0.002-100 mg per dose. [0051]
  • The preferred amount of the respiratory irritant zingerone is 0.04-200 mg per dose. [0052]
  • The preferred amount of the respiratory irritant shogaol is 0.04-200 mg per dose [0053]
  • The preferred amount of the respiratory irritant piperine is 0.04-200 mg per dose [0054]
  • The preferred amount of the respiratory irritants capsicums of [0055] Capsicum annum, Capsicum frutescens, and Capsicum chinense is 0.1-450 mg per dose.
  • The more preferred amount of the respiratory irritants capsaicin and dihydrocapsiacin is a combined total of 0.004-25 mg per dose. [0056]
  • The more preferred amount of the respiratory irritant zingerone 0.2-150 mg per dose. [0057]
  • The more preferred amount of the respiratory irritant shogaol 0.2-150 mg per dose [0058]
  • The more preferred amount of the respiratory irritant piperine is 0.2-150 mg per dose [0059]
  • The more preferred amount of the respiratory irritants capsicums of [0060] Capsicum annum, Capsicum frutescens, and Capsicum chinense is 0.4-350 mg per dose
  • The most preferred amount of the respiratory irritants capsaicin and dihydrocapsiacin is a combined total of 0.02-15 mg per dose. [0061]
  • The most preferred amount of the respiratory irritant zingerone 0.2-100 mg per dose. [0062]
  • The most preferred amount of the respiratory irritant shogaol 0.2-100 mg per dose [0063]
  • The most preferred amount of the respiratory irritant piperine is 0.2-100 mg per dose [0064]
  • The most preferred amount of the respiratory irritants capsicums of [0065] Capsicum annum, Capsicum frutescens, and Capsicum chinense is 0.6-250 mg per dose
  • Bitter agents also create an aversive response. The use of bitter agents is particularly useful in preventing abuse of controlled substances by chewing the oral dosage form. Bitter agents useful in the practice of this invention include, but are not limited to, agaricic acid, benzyl acetate, brucine, brucine sulfate, caffeine, capsaicin, catechin, dadzein, denatonium benzoate (Bitrex®) and other denatonium salts, denatonium capsaicinate, denatonium chloride, denatonium saccharide, diethyl phthalate, epicatechin, genistein, gentian violet, gerianol, hydroxytyrosol, kashin, limonin, linalool, linalool acetate, methyl anthranilate, naringin, nobiletin, oleuropin, phenylethyl alcohol, polyphenols, quassin, quebracho, quercitin, quinine, quinine sulfate, quinine hydrochloride, sinensetin, sucrose benzoate, sucrose octaacetate, and tangeretin and mixtures thereof. [0066]
  • Preferred bitter agents useful in the practice of this invention are, denatonium benzoate (Bitrex®) and other denatonium salts, denatonium capsaicinate, denatonium chloride, denatonium saccharide, limonin, linalool, linalool acetate, naringin, quassin, quercitin, sucrose benzoate, and sucrose octaacetate and mixtures thereof. [0067]
  • Most preferred bitter agents useful in the practice of this invention are denatonium benzoate (Bitrex®), denatonium capsaicinate, denatonium saccharide, and sucrose octaacetate and mixtures thereof. [0068]
  • Further, sour agents also create an aversive response. The use of sour agents is particularly useful in preventing abuse of controlled substances by chewing the oral dosage form. Sour agents useful in the practice of this invention include, but are not limited to, acidic organic compounds that contain one or more acidic protons per molecule and mixtures thereof. [0069]
  • Preferred sour agent useful in the practice of the invention are acidic organic compounds that contain two or more acidic protons per molecule and mixtures thereof. [0070]
  • Most preferred sour agents useful in the practice of the invention are citric acid and tartaric acid and mixtures thereof. [0071]
  • The controlled substance and aversive agent are incorporated into the dosage form using any of the methods known in the art for preparation of solid oral dosage forms. See, Remington's Pharmaceutical Sciences, 16[0072] th Edition.
  • Further, different combinations of aversive agents can be combined in the same dosage form. For example, if it is desired to reduce the potential for abuse via both inhalation and chewing, it may be desirable to combine both a respiratory irritant and a bitter agent in the same formulation. Further, combination of avervise agents can sometime have a synergistic effect, such that the combination has a greater effect than the sum of the individuals taken separately. Still further, people have different responses to taste, such that a mixture of bitter agents may be needed to be effective in a larger fraction of the population. [0073]
  • In addition to the controlled substance and aversive agent, excipients are used in the manufacture of the oral dosage forms of the present invention. Excipients useful in the practice if this invention include but are not limited to preservatives, viscosity agents, fillers, lubricants, glidants, disintegrants, binders, and encapsulants. [0074]
  • Preferred preservatives include, but are not limited to, phenol, alkyl esters of parahydroxybenzoic acid, o-phenylphenol benzoic acid and the salts thereof, boric acid and the salts thereof, sorbic acid and the salts thereof, chlorobutanol, benzyl alcohol, thimerosal, phenylmercuric acetate and nitrate, nitromersol, benzalkonium chloride, cetylpyridinium chloride, methyl paraben, and propyl paraben. Particularly preferred are the salts of benzoic acid, cetylpyridinium chloride, methyl paraben and propyl paraben. The compositions of the present invention generally include from 0-2% preservatives. [0075]
  • Preferred viscosity agents include, but are not limited to, methylcellulose, sodium carboxymethylcellulose, hydroxypropyl-methylcellulose, hydroxypropylcellulose, sodium alginate, carbomer, povidone, acacia, guar gum, xanthan gum and tragacanth. Particularly preferred are methylcellulose, carbomer, xanthan gum, guar gum, povidone, sodium carboxymethylcellulose, and magnesium aluminum silicate. Compositions of the present invention include 0-25% viscosity agents. [0076]
  • Preferred fillers include, but are not limited to, lactose, mannitol, sorbitol, tribasic calcium phosphate, dibasic calcium phosphate, compressible sugar, starch, calcium sulfate, dextro and microcrystalline cellulose. The compositions of the present invention contain from 0-75% fillers. [0077]
  • Preferred lubricants include, but are not limited to, magnesium stearate, stearic acid, and talc. The pharmaceutical compositions of the present invention include 0-2% lubricants. [0078]
  • Preferred glidants include, but are not limited to, talc and colloidal silica. The compositions of the present invention include from 0-5% glidants. [0079]
  • Preferred disintegrants include, but are not limited to, starch, sodium starch glycolate, crospovidone, croscarmelose sodium, polacrilin potassium, and microcrystalline cellulose. The pharmaceutical compositions of the present invention include from 0-30% disintegrants. [0080]
  • Preferred binders include, but are not limited to, acacia, tragacanth, hydroxypropylcellulose, pregelatinized starch, gelatin, povidone, hydroxypropylcellulose, hydroxypropyl-methylcellulose, methylcellulose, sugar solutions, such as sucrose and sorbitol, and ethylcellulose. The compositions of the present invention include 0.1-10% binders. [0081]
  • Encapsulants useful in the practice of the present invention include, but are not limited to permable coatings, impermeable coatings, and matrices. [0082]
  • Permeable coatings useful in this invention are well know to one skilled in the art and include Eudragit® RL, and Eudragit® RS (Rohm-Pharma Darmstadt, Germany) [0083]
  • Non-permeable coatings useful in this invention are well known to one skilled in the art and include Aquacoat CPD (FMC Corporation, Philadelphia, Pa., USA), Eudragit® E100, Eudragit® L100, Eudragit® S100 (Rohm-Pharma Darmstadt, Germany), Kollicoat® MA 30 DP (BASF Aktiengesellschaft, Ludwigshafen, Germany), Opadry light pink. [0084]
  • Plastizers for use with coatings useful in the practice of the invention include but are not limited to, triethyl citrate, 1,2-propylene glycol, polyethylene glycols, and tracetin. [0085]
  • Matrices for encapsulation useful in the practice of the invention include, but are not limited to, anion exchange resins, cation exchange resins, polymeric adsorbents, carbonaceous adsorbents, cellulosic polymers, and acrylic polymers. [0086]
  • Dosage forms of the present invention are immediate release or modified release. [0087]
  • The following non limiting examples illustrate the present invention: [0088]
  • EXAMPLE 1 30 MG EXTENDED RELEASE OXYCODONE TABLETS USING CAPSAICIN
  • [0089]
    Ingredient mg/tablet
    Oxycodone HCl 30
    Lactose 200
    Eudragit ® RS 45
    PM
    Purified water as
    needed
    Stearyl alcohol 75
    Talc 7.5
    Magnesium 3.75
    stearate
    Capsaicin 13.75
  • The required quantities of oxycodone hydrochloride, a Schedule II controlled substance, spray-dried lactose, capsaicin, and Eudragit® RS PM are placed into an appropriately-sized mixer, and mixed for approximately 5 minutes. While the powders are mixing, the mixture is granulated with enough water to produce a moist granular mass. The granules are then dried in a fluid bed dryer at 60° C., and then passed through an 8-mesh screen. Thereafter, the granules are redried and pushed through a 12-mesh screen. The required quantity of stearyl alcohol is melted at approximately 60-70° C., and while the granules are mixing, the melted stearyl alcohol is added. The warm granules are returned to the mixer. [0090]
  • The coated granules are removed from the mixer and allowed to cool. The granules are then passed through a 12-mesh screen. The granulate is then lubricated by mixing the required quantity of talc and magnesium stearate in a suitable blender. Tablets are compressed to 375 mg in weight on a suitable tableting machine. [0091]
  • EXAMPLE 2 30 MG EXTENDED RELEASE MORPHINE SULFATE TABLETS USING CAPSAICIN
  • [0092]
    Ingredient mg/tablet
    Morphine 30
    sulfate
    Lactose 79.5
    Eudragit ® RL 12
    Stearyl aclohol 24
    Talc 3
    Magnesium 1.5
    stearate
    Capsaicin 10
  • These tablets are prepared according to the following method: [0093]
  • Morphine sulfate, a Schedule II controlled substance, capsaicin, and lactose are intimately mixed in a suitable mixer. A granulation is then prepared by incorporating the granulating fluid into the mixing powders using Eudragit® RL. The granulate is then dried and passed through a 12 mesh screen. The stearyl alcohol is melted and incorporated into the warm granules using a suitable mixer. After cooling, the granules are passed through a 12 mesh screen. The granules are then lubricated by mixing in the talc and stearyl alcohol. Tablets are then compressed on a suitable tabletting machine using round biconvex tooling 10/32″ in diameter. [0094]
  • EXAMPLE 3 8 MG EXTENDED RELEASE HYDROMORPHONE CAPSULES USING SHOGAOL
  • [0095]
    Ingredient mg/capsule
    Loading
    Hydromorphone 8
    HCl
    Opadry light 4
    pink (Y-5-1442)
    Purified water as needed
    18/20 mesh 148
    sugar spheres
    Overcoating
    Opadry light 8.4
    pink (Y-5-1442)
    Purified water as needed
    Retardant
    coating
    Eudragit ® RS 7.6
    30D
    Eudragit ® RL 0.8
    30D
    Triethyl citrate 1.68
    Talc 3.36
    Purified water as needed
    Second overcoat
    Opadry light 9.6
    pink (Y-5-1442)
    Purified water ass
    needed
    Encapsulatin
    Size #2 clear
    hard gelatin
    capsules
    Shogaol 75
  • Hydromorphone beads are prepared by dissolving hydromorphone HCl, a Schedule II controlled substance, in water, adding Opadry Y-5-1442 and mixing for about 1 hour to obtain a 20% w/w suspension. This suspension is then sprayed onto Nu-Pareil® 18/20 mesh beads using a Wurster insert. [0096]
  • First Overcoat [0097]
  • The loaded hydromorphone beads are then overcoated with a 5% w/w gain of Opadry Light Pink using a Wurster insert. This overcoat is applied as a protective coating. [0098]
  • Retardant Coat [0099]
  • After the first overcoat, the hydromorphone beads are then coated with a 5% weight gain of a retardant coating mixture of Eudragit® RS 30D and Eudragit® RL 30D at a ratio of 90:10, RS to RL. The addition of Triethyl Citrate and Talc is also included in the Eudragit suspension. The Wurster insert is used to apply the coating suspension. [0100]
  • Second Overcoat [0101]
  • Once the retardant coating is complete, the hydromorphone beads are given a final overcoat of Opadry Light Pink to a 5% weight gain using a Wurster insert. This overcoat is also applied as a protective coating. [0102]
  • Curing [0103]
  • After the completion of the final overcoat, the hydromorphone beads are cured in a 45° C. oven for 2 days. [0104]
  • Encapsulation [0105]
  • The beads are mixed with shogaol in a suitable mixer and the mixture is then hand filled in size #2 clear gelatin capsules. [0106]
  • EXAMPLE 4 30 MG EXTENDED RELEASE OXYCODONE TABLETS USING PIPERINE
  • Tablets are prepared as described in Example 1, except that the respiratory irritiant used is piperine, and the quantities used are as follows: [0107]
    Ingredient mg/tablet
    Oxycodone HCl 30
    Lactose 138.75
    Eudragit ® RS 45
    PM
    Purified water as
    needed
    Stearyl alcohol 75
    Talc 7.5
    Magnesium 3.75
    stearate
    Piperine 75
  • EXAMPLE 5 30 MG EXTENDED RELEASE MORPHINE SULFATE TABLETS USING DENATONIUM BENZOATE
  • These tablets are prepared as described in Example 2 except that the capsaicin is replaced with 2 mg/tablet of denatonium bezoate (available as Bitrex® from Macfarlan Smith, Edinburgh, UK). [0108]
  • EXAMPLE 6
  • A Caucasian female, age 27, weighing 50 kg suffering from back pain takes a 30 mg tablet of sustained release oxycodone from Example 1 as prescribed, by swallowing said tablet whole. She experiences 15 hours of pain relief without any aversive response. [0109]
  • EXAMPLE 7
  • A Caucasian male recreational drug user, age 45, weighing 80 kg crushes a 30 mg tablet of sustained release oxycodone from Example 1 to give a powder. He then inhales said powder through the nose. He immediately experiences an aversive response, including an intense burning sensation in the nasal passages, sneezing, watery eyes and headache. [0110]
  • EXAMPLE 8
  • An African-American male, aged 18, weighing 66 kg, who has never abused drugs crushes an extended release 30 mg morphine tablet from Example 2 into a powder and then inhales said powder through the nose. He immediately experiences an aversive response, including an intense burning sensation in the nasal passages, coughing, and watery eyes. [0111]
  • EXAMPLE 9
  • An Asian female, recreational drug user, aged 28, weighing 55 kg, breaks an 8 mg hydromorhone capsule from Example 3 and empties out the contents from the capsule. She crushes the beads into a fine powder and then inhales said powder through the nose. She immediately experiences an aversive response, including an intense burning sensation in the nasal passages and the throat, coughing, and watery eyes. [0112]
  • EXAMPLE 10
  • At a party a Caucasian male recreational drug user, aged 17, weighing 65 kg is offered a 30 mg morphine sulfate tablet, as prepared in Example 5. He chews it and he immediately experiences an aversive response causing him to spit out the chewed dosage form. [0113]

Claims (10)

We claim:
1. An oral pharmaceutical dosage form not susceptible to abuse by respiratory mucosal membrane administration comprising one or more aversive agents.
2. An oral pharmaceutical dosage form not susceptible to abuse by chewing comprising one or more aversive agents.
3. An oral pharmaceutical dosage form not susceptible to abuse by respiratory mucosal membrane administration comprising one or more aversive agents and a controlled substance.
4. An oral pharmaceutical dosage form not susceptible to abuse by chewing comprising one or more aversive agents and a controlled substance.
5. An oral pharmaceutical dosage form according to claim 3, wherein said aversive agent is a respiratory irritant selected from the group consisting of capsaicin, capsacutin dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, capsaicinoids, gingerol, piperine, isopiperine, zingerone, shogaol, and vanyllylamide derivatives, and mixtures thereof.
6. An oral pharmaceutical dosage form according to claim 4, wherein said aversive agent is a bitter substance selected from the group consisting of denatonium benzoate, denatonium capsaicinate, denatonium chloride, denatonium saccharide, limonin, linalool, linalool acetate, naringin, quassin, quercitin, sucrose benzoate, and sucrose octaacetate, and mixtures thereof.
7. An oral pharmaceutical dosage form according to claim 5, wherein said controlled substance is selected from the group consisting of Schedule II, III, IV, and V controlled substances.
8. An oral pharmaceutical dosage form according to claim 6, wherein said controlled substance is selected from the group consisting of Schedule II, III, IV, and V controlled substances.
9. An oral pharmaceutical dosage form according to claim 7, wherein said controlled substance is a Schedule II controlled substance.
10. An oral pharmaceutical dosage form according to claim 8, wherein said controlled substance is a Schedule II controlled substance.
US10/016,336 2001-09-17 2001-11-02 Dosage forms Abandoned US20030068276A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/016,336 US20030068276A1 (en) 2001-09-17 2001-11-02 Dosage forms
EP02256157A EP1293195A1 (en) 2001-09-17 2002-09-05 Oral pharmaceutical dosage forms with reduced potential for drug abuse, comprising respiratory irritants or bitter substances
KR1020020054861A KR20030024583A (en) 2001-09-17 2002-09-11 Dosage Forms
JP2002269709A JP2003113074A (en) 2001-09-17 2002-09-17 Dosage form
US10/679,785 US7655256B2 (en) 2001-09-17 2003-10-06 Pharmaceutical formulation including a resinate and an aversive agent
US10/713,926 US20040126428A1 (en) 2001-11-02 2003-11-14 Pharmaceutical formulation including a resinate and an aversive agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32262401P 2001-09-17 2001-09-17
US10/016,336 US20030068276A1 (en) 2001-09-17 2001-11-02 Dosage forms

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/679,785 Continuation-In-Part US7655256B2 (en) 2001-09-17 2003-10-06 Pharmaceutical formulation including a resinate and an aversive agent
US10/713,926 Continuation-In-Part US20040126428A1 (en) 2001-11-02 2003-11-14 Pharmaceutical formulation including a resinate and an aversive agent

Publications (1)

Publication Number Publication Date
US20030068276A1 true US20030068276A1 (en) 2003-04-10

Family

ID=26688465

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/016,336 Abandoned US20030068276A1 (en) 2001-09-17 2001-11-02 Dosage forms
US10/679,785 Expired - Fee Related US7655256B2 (en) 2001-09-17 2003-10-06 Pharmaceutical formulation including a resinate and an aversive agent

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/679,785 Expired - Fee Related US7655256B2 (en) 2001-09-17 2003-10-06 Pharmaceutical formulation including a resinate and an aversive agent

Country Status (4)

Country Link
US (2) US20030068276A1 (en)
EP (1) EP1293195A1 (en)
JP (1) JP2003113074A (en)
KR (1) KR20030024583A (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064122A1 (en) * 2001-05-23 2003-04-03 Endo Pharmaceuticals, Inc. Abuse resistant pharmaceutical composition containing capsaicin
US20030068392A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
US20030068371A1 (en) * 2001-08-06 2003-04-10 Benjamin Oshlack Pharmaceutical formulation containing opioid agonist,opioid antagonist and gelling agent
US20030068375A1 (en) * 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US20030091635A1 (en) * 2001-09-26 2003-05-15 Baichwal Anand R. Opioid formulations having reduced potential for abuse
US20030129234A1 (en) * 2001-07-06 2003-07-10 Penwest Pharmaceuticals Company Methods of making sustained release formulations of oxymorphone
US20040131552A1 (en) * 2002-09-20 2004-07-08 Alpharma, Inc. Sequestering subunit and related compositions and methods
US20050112067A1 (en) * 2003-11-26 2005-05-26 Vijai Kumar Methods and compositions for deterring abuse of opioid containing dosage forms
US20050236741A1 (en) * 2004-04-22 2005-10-27 Elisabeth Arkenau Process for the production of an abuse-proofed solid dosage form
US20060002860A1 (en) * 2004-07-01 2006-01-05 Johannes Bartholomaus Abuse-proofed oral dosage form
US20060039864A1 (en) * 2004-07-01 2006-02-23 Johannes Bartholomaus Abuse-proofed oral dosage form
US20060110327A1 (en) * 2004-11-24 2006-05-25 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20060177380A1 (en) * 2004-11-24 2006-08-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20060188447A1 (en) * 2005-02-04 2006-08-24 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
WO2006125819A2 (en) * 2005-05-24 2006-11-30 Flamel Technologies Oral microparticulate, anti-misuse drug formulation
US20070003616A1 (en) * 2003-12-24 2007-01-04 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
US20070098794A1 (en) * 2001-07-06 2007-05-03 Haui-Hung Kao Oxymorphone controlled release formulations
US20070134328A1 (en) * 2001-07-06 2007-06-14 Endo Pharmaceuticals, Inc. Oxymorphone controlled release formulations
US20070183980A1 (en) * 2003-08-06 2007-08-09 Elisabeth Arkenau-Maric Dosage form that is safeguarded from abuse
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
US20070231268A1 (en) * 2004-11-24 2007-10-04 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
WO2007135193A2 (en) * 2006-05-24 2007-11-29 Flamel Technologies Sustained-release alcohol-resistant multimicroparticulate oral pharmaceutical form comprising anti-misuse means
US20080020032A1 (en) * 2006-07-21 2008-01-24 Michael Crowley Hydrophobic abuse deterrent delivery system for hydromorphone
US20080152595A1 (en) * 2004-11-24 2008-06-26 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20080233156A1 (en) * 2006-10-11 2008-09-25 Alpharma, Inc. Pharmaceutical compositions
US20080247959A1 (en) * 2003-08-06 2008-10-09 Grunenthal Gmbh Form of administration secured against misuse
US20080312264A1 (en) * 2004-07-01 2008-12-18 Grunenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US20090076053A1 (en) * 2004-11-16 2009-03-19 Wendye Robbins Methods and compositions for treating pain
US20090124650A1 (en) * 2007-06-21 2009-05-14 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol
US20090175950A1 (en) * 2003-01-10 2009-07-09 Roberts Richard H Pharmaceutical safety dosage forms
US20090196890A1 (en) * 2007-12-17 2009-08-06 Alpharma Pharmaceuticals, Llc Pharmaceutical compositions
US20090202634A1 (en) * 2008-01-25 2009-08-13 Grunenthal Gmbh Pharmaceutical dosage form
US20100151028A1 (en) * 2005-02-04 2010-06-17 Grunenthal Gmbh Crush resistant delayed-release dosage forms
US20100152221A1 (en) * 2007-12-17 2010-06-17 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
US20100266645A1 (en) * 2007-12-17 2010-10-21 Alfred Liang Pharmaceutical compositions
US20110020451A1 (en) * 2009-07-22 2011-01-27 Grunenthal Gmbh Tamper-resistant dosage form for oxidation-sensitive opioids
US20110077238A1 (en) * 2009-09-30 2011-03-31 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
US20110082214A1 (en) * 2008-05-09 2011-04-07 Gruenthal Gmbh Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US20110182807A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and Dosage Form to Confirm Compliant Use of a Bioactive Agent
WO2011091413A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and dosage form to confirm compliant use of a bioactive agent
US20110182827A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and Dosage Form to Confirm Compliant Use of a Bioactive Agent
US20110182824A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and dosage form to confirm compliant use of a bioactive agent
US20110237615A1 (en) * 2008-12-12 2011-09-29 Paladin Labs Inc. Narcotic Drug Formulations with Decreased Abuse Potential
WO2012054067A1 (en) * 2010-10-20 2012-04-26 Howard William W Benzonatate compositions and methods of use
US8420056B2 (en) 2003-08-06 2013-04-16 Grunenthal Gmbh Abuse-proofed dosage form
US8445023B2 (en) 2005-11-10 2013-05-21 Flamel Technologies Anti-misuse microparticulate oral pharmaceutical form
US8652497B2 (en) 2001-08-06 2014-02-18 Purdue Pharma L.P. Pharmaceutical formulation containing irritant
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US8808740B2 (en) 2010-12-22 2014-08-19 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US8846104B2 (en) 2006-06-19 2014-09-30 Alpharma Pharmaceuticals Llc Pharmaceutical compositions for the deterrence and/or prevention of abuse
US9101636B2 (en) 2012-11-30 2015-08-11 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US9149533B2 (en) 2013-02-05 2015-10-06 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9616030B2 (en) 2013-03-15 2017-04-11 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9616029B2 (en) 2014-03-26 2017-04-11 Sun Pharma Advanced Research Company Ltd. Abuse deterrent immediate release coated reservoir solid dosage form
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US9707180B2 (en) 2010-12-23 2017-07-18 Purdue Pharma L.P. Methods of preparing tamper resistant solid oral dosage forms
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US9763886B2 (en) 2006-08-25 2017-09-19 Purdue Pharma L.P. Tamper resistant dosage forms
US9814684B2 (en) 2002-04-09 2017-11-14 Flamel Ireland Limited Oral pharmaceutical formulation in the form of aqueous suspension for modified release of active principle(s)
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US10525053B2 (en) 2002-07-05 2020-01-07 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opioids and other drugs
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10646485B2 (en) 2016-06-23 2020-05-12 Collegium Pharmaceutical, Inc. Process of making stable abuse-deterrent oral formulations
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
CN111569029A (en) * 2020-05-18 2020-08-25 赖宇 Traditional Chinese medicine composition for improving respiratory tract mucosa immunologic function and preparation method thereof
US10786485B1 (en) 2019-03-11 2020-09-29 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US10842798B1 (en) 2019-11-06 2020-11-24 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10927096B2 (en) 2019-03-11 2021-02-23 Nocion Therapeutics, Inc. Ester substituted ion channel blockers and methods for use
US10933055B1 (en) 2019-11-06 2021-03-02 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10934263B2 (en) 2019-03-11 2021-03-02 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10968179B2 (en) * 2019-03-11 2021-04-06 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US11103581B2 (en) 2015-08-31 2021-08-31 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US11332446B2 (en) 2020-03-11 2022-05-17 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10250084A1 (en) * 2002-10-25 2004-05-06 Grünenthal GmbH Dosage form protected against abuse
US8906413B2 (en) * 2003-05-12 2014-12-09 Supernus Pharmaceuticals, Inc. Drug formulations having reduced abuse potential
CN100588391C (en) * 2003-08-12 2010-02-10 恩德制药公司 Single long acting slow-release tablet for deterring abuse of medicine
AU2013206525B2 (en) * 2003-11-26 2015-09-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US20060045891A1 (en) * 2004-08-24 2006-03-02 Lovalenti Phillip M Density-matched suspension vehicles and pharmaceutical suspensions
FR2892937B1 (en) * 2005-11-10 2013-04-05 Flamel Tech Sa MICROPARTICULAR ORAL PHARMACEUTICAL FORM ANTI-MEASURING
US20070232638A1 (en) * 2006-04-03 2007-10-04 Howard Brooks-Korn Opiopathies
US20080226789A1 (en) * 2007-03-14 2008-09-18 Concentrate Manufacturing Company Of Ireland Beverage products with non-nutritive sweetener and bitterant
US9314048B2 (en) 2007-03-14 2016-04-19 The Concentrate Manufacturing Company Of Ireland Beverage products with non-nutritive sweetener and bitterant
US8104433B2 (en) * 2008-07-17 2012-01-31 Vet Planet, Llc Long-lasting gustatory and/or olfactory aversion veterinary compositions for behavior modification
CA2750144C (en) 2008-12-31 2016-10-25 Upsher-Smith Laboratories, Inc. Opioid-containing oral pharmaceutical compositions and methods
FR2949062B1 (en) * 2009-08-12 2011-09-02 Debregeas Et Associes Pharma NEW PHARMACEUTICAL FORMULATIONS AGAINST MEASURING MEDICINES
WO2011028582A1 (en) * 2009-09-01 2011-03-10 Banner Pet Products, Inc. System and method of pet behavior modification
US8187617B2 (en) * 2009-09-11 2012-05-29 William Wayne Howard Immediate release compositions and methods for delivering drug formulations using weak acid ion exchange resins in abnormally high pH environments
EP2477610A1 (en) 2009-09-17 2012-07-25 Upsher-Smith Laboratories, Inc. A sustained-release product comprising a combination of a non-opioid amine and a non-steroidal anti -inflammatory drug
AU2011271429B2 (en) * 2010-06-30 2016-04-21 Upsher-Smith Laboratories, Llc Sustained release composition comprising an amine as active agent and a salt of a cyclic organic acid
WO2013003845A1 (en) * 2011-06-30 2013-01-03 Neos Therapeutics, Lp Abuse resistant drug forms
NZ629468A (en) * 2012-03-02 2017-08-25 Rhodes Pharmaceuticals Lp Tamper resistant immediate release formulations
ES2441468B1 (en) * 2012-08-03 2014-11-13 Laboratorios Rubió, S.A. SOLID PHARMACEUTICAL COMPOSITION OF CATIÓNIC EXCHANGE RESIN.
CA3042642A1 (en) 2013-08-12 2015-02-19 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
US10172797B2 (en) 2013-12-17 2019-01-08 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
JP2017508844A (en) * 2014-03-07 2017-03-30 ザ プロクター アンド ギャンブル カンパニー Composition comprising stimulant
EP3169315B1 (en) 2014-07-17 2020-06-24 Pharmaceutical Manufacturing Research Services, Inc. Immediate release abuse deterrent liquid fill dosage form
AU2015336065A1 (en) 2014-10-20 2017-05-04 Pharmaceutical Manufacturing Research Services, Inc. Extended release abuse deterrent liquid fill dosage form
US10835505B2 (en) * 2018-06-11 2020-11-17 Aardvark Therapeutics, Inc. Oral pharmaceutical formulation for weight loss, diabetes and related disorders
CN108887455B (en) * 2018-06-17 2021-07-30 西宝生物科技(上海)股份有限公司 Product for preventing excessive chewing and preparation method thereof
JP2022549833A (en) * 2019-09-25 2022-11-29 アードバーク・セラピューティクス・インコーポレイテッド Oral immediate release pharmaceutical composition and method of weight loss treatment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268577A (en) * 1960-11-15 1966-08-23 Edinburgh Pharmaceutical Ind L Quaternary organic salts of omega-dialkylamino-2, 6-dimethylacetanilides
US3773955A (en) * 1970-08-03 1973-11-20 Bristol Myers Co Analgetic compositions
US3966940A (en) * 1973-11-09 1976-06-29 Bristol-Myers Company Analgetic compositions
US3980766A (en) * 1973-08-13 1976-09-14 West Laboratories, Inc. Orally administered drug composition for therapy in the treatment of narcotic drug addiction
US4070494A (en) * 1975-07-09 1978-01-24 Bayer Aktiengesellschaft Enteral pharmaceutical compositions
US4457933A (en) * 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
US4529583A (en) * 1983-03-07 1985-07-16 Clear Lake Development Group Composition and method of immobilizing emetics and method of treating human beings with emetics
US4599342A (en) * 1984-01-16 1986-07-08 The Procter & Gamble Company Pharmaceutical products providing enhanced analgesia
US5334378A (en) * 1992-04-02 1994-08-02 Rohto Pharmaceutical Co., Ltd. Pharmaceutical formulation in the form of aqueous suspension
US6228863B1 (en) * 1997-12-22 2001-05-08 Euro-Celtique S.A. Method of preventing abuse of opioid dosage forms
US20030068392A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE636812A (en) 1958-10-06
US5236714A (en) 1988-11-01 1993-08-17 Alza Corporation Abusable substance dosage form having reduced abuse potential
GB8926612D0 (en) 1989-11-24 1990-01-17 Erba Farmitalia Pharmaceutical compositions
JP3207495B2 (en) 1992-04-02 2001-09-10 ロート製薬株式会社 Sustained-release suspension formulation with stable release
IN176897B (en) * 1993-10-29 1996-09-28 Cadila Lab Ltd
GB9401894D0 (en) 1994-02-01 1994-03-30 Rhone Poulenc Rorer Ltd New compositions of matter
CN1048751C (en) * 1996-05-29 2000-01-26 鲜京工业股份有限公司 Gas formulation containing bittering agent
GB9725219D0 (en) * 1997-11-29 1998-01-28 Cleansharp Ltd Tablets
JP2000026260A (en) * 1998-07-13 2000-01-25 Earth Chem Corp Ltd Oral composition
EP1005863A1 (en) 1998-12-04 2000-06-07 Synthelabo Controlled-release dosage forms comprising a short acting hypnotic or a salt thereof
AU6381300A (en) 1999-07-29 2001-02-19 Roxane Laboratories, Inc. Opioid sustained-released formulation
GB9926699D0 (en) 1999-11-12 2000-01-12 Filtrex Corp Sa Pesticidal composition
US20030064122A1 (en) 2001-05-23 2003-04-03 Endo Pharmaceuticals, Inc. Abuse resistant pharmaceutical composition containing capsaicin
BR0212020A (en) 2001-08-06 2005-08-16 Euro Celtique Sa Dosage forms, methods for preventing abuse of a dosage form, methods for preventing diversion of a dosage form, methods for treating pain and method of preparing a dosage form

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268577A (en) * 1960-11-15 1966-08-23 Edinburgh Pharmaceutical Ind L Quaternary organic salts of omega-dialkylamino-2, 6-dimethylacetanilides
US3773955A (en) * 1970-08-03 1973-11-20 Bristol Myers Co Analgetic compositions
US3980766A (en) * 1973-08-13 1976-09-14 West Laboratories, Inc. Orally administered drug composition for therapy in the treatment of narcotic drug addiction
US3966940A (en) * 1973-11-09 1976-06-29 Bristol-Myers Company Analgetic compositions
US4070494A (en) * 1975-07-09 1978-01-24 Bayer Aktiengesellschaft Enteral pharmaceutical compositions
US4457933A (en) * 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
US4529583A (en) * 1983-03-07 1985-07-16 Clear Lake Development Group Composition and method of immobilizing emetics and method of treating human beings with emetics
US4599342A (en) * 1984-01-16 1986-07-08 The Procter & Gamble Company Pharmaceutical products providing enhanced analgesia
US5334378A (en) * 1992-04-02 1994-08-02 Rohto Pharmaceutical Co., Ltd. Pharmaceutical formulation in the form of aqueous suspension
US6228863B1 (en) * 1997-12-22 2001-05-08 Euro-Celtique S.A. Method of preventing abuse of opioid dosage forms
US20030068392A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant

Cited By (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064122A1 (en) * 2001-05-23 2003-04-03 Endo Pharmaceuticals, Inc. Abuse resistant pharmaceutical composition containing capsaicin
US20070098794A1 (en) * 2001-07-06 2007-05-03 Haui-Hung Kao Oxymorphone controlled release formulations
US8309122B2 (en) 2001-07-06 2012-11-13 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
US8329216B2 (en) 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
US7276250B2 (en) 2001-07-06 2007-10-02 Penwest Pharmaceuticals Company Sustained release formulations of oxymorphone
US20030129234A1 (en) * 2001-07-06 2003-07-10 Penwest Pharmaceuticals Company Methods of making sustained release formulations of oxymorphone
US20030129230A1 (en) * 2001-07-06 2003-07-10 Penwest Pharmaceuticals Company Sustained release formulations of oxymorphone
US20070134328A1 (en) * 2001-07-06 2007-06-14 Endo Pharmaceuticals, Inc. Oxymorphone controlled release formulations
US9808453B2 (en) 2001-08-06 2017-11-07 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent
US9034376B2 (en) 2001-08-06 2015-05-19 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10500160B2 (en) 2001-08-06 2019-12-10 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US20030068392A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
US10206881B2 (en) 2001-08-06 2019-02-19 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10130586B2 (en) 2001-08-06 2018-11-20 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10076497B2 (en) 2001-08-06 2018-09-18 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10071057B2 (en) 2001-08-06 2018-09-11 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10064824B2 (en) 2001-08-06 2018-09-04 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US20070014732A1 (en) * 2001-08-06 2007-01-18 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant agent
US10064825B2 (en) 2001-08-06 2018-09-04 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10028947B2 (en) 2001-08-06 2018-07-24 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant agent
US10022369B2 (en) 2001-08-06 2018-07-17 Purdue Pharma L.P. Pharmaceutical formulation containing irritant
US10537526B2 (en) 2001-08-06 2020-01-21 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US11135171B2 (en) 2001-08-06 2021-10-05 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US20030068371A1 (en) * 2001-08-06 2003-04-10 Benjamin Oshlack Pharmaceutical formulation containing opioid agonist,opioid antagonist and gelling agent
US8337888B2 (en) 2001-08-06 2012-12-25 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9968559B2 (en) 2001-08-06 2018-05-15 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9877924B2 (en) 2001-08-06 2018-01-30 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8389007B2 (en) 2001-08-06 2013-03-05 Purdue Pharma L.P. Pharmaceutical composition containing gelling agent
US9872836B2 (en) 2001-08-06 2018-01-23 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9867784B2 (en) 2001-08-06 2018-01-16 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9867783B2 (en) 2001-08-06 2018-01-16 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9861582B2 (en) 2001-08-06 2018-01-09 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US7332182B2 (en) 2001-08-06 2008-02-19 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
US9861583B2 (en) 2001-08-06 2018-01-09 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8524275B2 (en) 2001-08-06 2013-09-03 Purdue Pharma L.P. Pharmaceutical formulations containing opioid agonist, opioid antagonist and gelling agent
US8017148B2 (en) 2001-08-06 2011-09-13 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant agent
US9757341B2 (en) 2001-08-06 2017-09-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9737529B2 (en) 2001-08-06 2017-08-22 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant agent
US9693961B2 (en) 2001-08-06 2017-07-04 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US7842307B2 (en) 2001-08-06 2010-11-30 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent
US9561225B2 (en) 2001-08-06 2017-02-07 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent
US9517207B2 (en) 2001-08-06 2016-12-13 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9511065B2 (en) 2001-08-06 2016-12-06 Purdue Pharma L.P. Pharmaceutical formulation containing irritant
US9387174B2 (en) 2001-08-06 2016-07-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9387173B2 (en) 2001-08-06 2016-07-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9326954B2 (en) 2001-08-06 2016-05-03 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant agent
US9308171B2 (en) 2001-08-06 2016-04-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9308170B2 (en) 2001-08-06 2016-04-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9155717B2 (en) 2001-08-06 2015-10-13 Purdue Pharma L. P. Pharmaceutical formulation containing irritant
US9101668B2 (en) 2001-08-06 2015-08-11 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent
US9060976B2 (en) 2001-08-06 2015-06-23 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US20090081287A1 (en) * 2001-08-06 2009-03-26 Purdue Pharma L.P. Pharmaceutical Composition Containing Gelling Agent
US9044435B2 (en) 2001-08-06 2015-06-02 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9040084B2 (en) 2001-08-06 2015-05-26 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8529948B1 (en) 2001-08-06 2013-09-10 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8999961B2 (en) 2001-08-06 2015-04-07 Purdue Pharma, L.P. Pharmaceutical formulation containing gelling agent
US8871265B2 (en) 2001-08-06 2014-10-28 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8652515B2 (en) 2001-08-06 2014-02-18 Purdue Pharma L.P. Pharmaceutical formulation containing an opioid agonist, opioid antagonist and irritant agent
US8652497B2 (en) 2001-08-06 2014-02-18 Purdue Pharma L.P. Pharmaceutical formulation containing irritant
US8609683B2 (en) 2001-08-06 2013-12-17 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US20100168148A1 (en) * 2001-08-06 2010-07-01 Curtis Wright Pharmaceutical formulation containing gelling agent
US20030068375A1 (en) * 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US20030091635A1 (en) * 2001-09-26 2003-05-15 Baichwal Anand R. Opioid formulations having reduced potential for abuse
US20070140975A1 (en) * 2001-09-26 2007-06-21 Penwest Pharmaceuticals Co. Opioid formulations having reduced potential for abuse
US9814684B2 (en) 2002-04-09 2017-11-14 Flamel Ireland Limited Oral pharmaceutical formulation in the form of aqueous suspension for modified release of active principle(s)
US10004693B2 (en) 2002-04-09 2018-06-26 Flamel Ireland Limited Oral pharmaceutical formulation in the form of aqueous suspension for modified release of active principle(s)
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US10525053B2 (en) 2002-07-05 2020-01-07 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opioids and other drugs
US7815934B2 (en) 2002-09-20 2010-10-19 Alpharma Pharmaceuticals, Llc Sequestering subunit and related compositions and methods
US8685444B2 (en) 2002-09-20 2014-04-01 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and methods
US8685443B2 (en) 2002-09-20 2014-04-01 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and methods
US20100310608A1 (en) * 2002-09-20 2010-12-09 Garth Boehm Sequestering subunit and related compositions and methods
US20110014280A1 (en) * 2002-09-20 2011-01-20 Garth Boehm Sequestering subunit and related compositions and methods
US20040131552A1 (en) * 2002-09-20 2004-07-08 Alpharma, Inc. Sequestering subunit and related compositions and methods
US20110027455A1 (en) * 2002-09-20 2011-02-03 Garth Boehm Sequestering subunit and related compositions and methods
US20090175950A1 (en) * 2003-01-10 2009-07-09 Roberts Richard H Pharmaceutical safety dosage forms
US7919120B2 (en) 2003-01-10 2011-04-05 Mutual Pharmaceuticals, Inc. Pharmaceutical safety dosage forms
US20080247959A1 (en) * 2003-08-06 2008-10-09 Grunenthal Gmbh Form of administration secured against misuse
US8192722B2 (en) 2003-08-06 2012-06-05 Grunenthal Gmbh Abuse-proof dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US8309060B2 (en) 2003-08-06 2012-11-13 Grunenthal Gmbh Abuse-proofed dosage form
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US10130591B2 (en) 2003-08-06 2018-11-20 Grünenthal GmbH Abuse-proofed dosage form
US20070183980A1 (en) * 2003-08-06 2007-08-09 Elisabeth Arkenau-Maric Dosage form that is safeguarded from abuse
US8420056B2 (en) 2003-08-06 2013-04-16 Grunenthal Gmbh Abuse-proofed dosage form
US20080311049A1 (en) * 2003-08-06 2008-12-18 Grunenthal Gmbh Abuse-proof dosage form
US20070264327A1 (en) * 2003-11-26 2007-11-15 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US7510726B2 (en) 2003-11-26 2009-03-31 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US9492443B2 (en) 2003-11-26 2016-11-15 Acura Pharmaceuticals, Inc. Abuse deterrent compositions and methods of making same
US8409616B2 (en) 2003-11-26 2013-04-02 Acura Pharmaceuticals, Inc. Extended release opioid abuse deterrent compositions and methods of making same
US7476402B2 (en) 2003-11-26 2009-01-13 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US20090004292A1 (en) * 2003-11-26 2009-01-01 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US8822489B2 (en) 2003-11-26 2014-09-02 Acura Pharmaceuticals Abuse deterrent compositions and methods of making same
US8637540B2 (en) 2003-11-26 2014-01-28 Acura Pharmaceuticals Compositions for deterring abuse of opioid containing dosage forms
US7201920B2 (en) 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US20050112067A1 (en) * 2003-11-26 2005-05-26 Vijai Kumar Methods and compositions for deterring abuse of opioid containing dosage forms
US20070166234A1 (en) * 2003-11-26 2007-07-19 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US7981439B2 (en) 2003-11-26 2011-07-19 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of drugs susceptible to abuse and dosage forms thereof
US20070003616A1 (en) * 2003-12-24 2007-01-04 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
US20090005408A1 (en) * 2003-12-24 2009-01-01 Grunenthal Gmbh Process for the production of an abuse-proofed dosage form
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US20050236741A1 (en) * 2004-04-22 2005-10-27 Elisabeth Arkenau Process for the production of an abuse-proofed solid dosage form
US20080317854A1 (en) * 2004-04-22 2008-12-25 Grunenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US10525052B2 (en) 2004-06-12 2020-01-07 Collegium Pharmaceutical, Inc. Abuse-deterrent drug formulations
US8323889B2 (en) 2004-07-01 2012-12-04 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US20060039864A1 (en) * 2004-07-01 2006-02-23 Johannes Bartholomaus Abuse-proofed oral dosage form
US20060002860A1 (en) * 2004-07-01 2006-01-05 Johannes Bartholomaus Abuse-proofed oral dosage form
US20080312264A1 (en) * 2004-07-01 2008-12-18 Grunenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form
US20080248113A1 (en) * 2004-07-01 2008-10-09 Grunenthal Gmbh Abuse-proofed oral dosage form
US20090076053A1 (en) * 2004-11-16 2009-03-19 Wendye Robbins Methods and compositions for treating pain
US20080152595A1 (en) * 2004-11-24 2008-06-26 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20060177380A1 (en) * 2004-11-24 2006-08-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20060110327A1 (en) * 2004-11-24 2006-05-25 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20070231268A1 (en) * 2004-11-24 2007-10-04 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20080311197A1 (en) * 2005-02-04 2008-12-18 Grunenthal Gmbh Process for the production of an abuse-proofed dosage form
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US20060188447A1 (en) * 2005-02-04 2006-08-24 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
US20100151028A1 (en) * 2005-02-04 2010-06-17 Grunenthal Gmbh Crush resistant delayed-release dosage forms
WO2006125819A2 (en) * 2005-05-24 2006-11-30 Flamel Technologies Oral microparticulate, anti-misuse drug formulation
WO2006125819A3 (en) * 2005-05-24 2008-03-06 Flamel Tech Sa Oral microparticulate, anti-misuse drug formulation
FR2889810A1 (en) * 2005-05-24 2007-02-23 Flamel Technologies Sa ORAL MEDICINAL FORM, MICROPARTICULAR, ANTI-MEASUREMENT
US8445023B2 (en) 2005-11-10 2013-05-21 Flamel Technologies Anti-misuse microparticulate oral pharmaceutical form
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
WO2007135193A3 (en) * 2006-05-24 2008-06-26 Flamel Tech Sa Sustained-release alcohol-resistant multimicroparticulate oral pharmaceutical form comprising anti-misuse means
WO2007135193A2 (en) * 2006-05-24 2007-11-29 Flamel Technologies Sustained-release alcohol-resistant multimicroparticulate oral pharmaceutical form comprising anti-misuse means
US8846104B2 (en) 2006-06-19 2014-09-30 Alpharma Pharmaceuticals Llc Pharmaceutical compositions for the deterrence and/or prevention of abuse
US8877247B2 (en) 2006-06-19 2014-11-04 Alpharma Pharmaceuticals Llc Abuse-deterrent multi-layer pharmaceutical composition comprising an opioid antagonist and an opioid agonist
US20080075771A1 (en) * 2006-07-21 2008-03-27 Vaughn Jason M Hydrophilic opioid abuse deterrent delivery system using opioid antagonists
US20080069871A1 (en) * 2006-07-21 2008-03-20 Vaughn Jason M Hydrophobic abuse deterrent delivery system
US20100047345A1 (en) * 2006-07-21 2010-02-25 Crowley Michael M Hydrophobic abuse deterrent delivery system for hydromorphone
US20080075768A1 (en) * 2006-07-21 2008-03-27 Vaughn Jason M Hydrophobic opioid abuse deterrent delivery system using opioid antagonists
US20080075770A1 (en) * 2006-07-21 2008-03-27 Vaughn Jason M Hydrophilic abuse deterrent delivery system
US20080020032A1 (en) * 2006-07-21 2008-01-24 Michael Crowley Hydrophobic abuse deterrent delivery system for hydromorphone
US9763886B2 (en) 2006-08-25 2017-09-19 Purdue Pharma L.P. Tamper resistant dosage forms
US10076498B2 (en) 2006-08-25 2018-09-18 Purdue Pharma L.P. Tamper resistant dosage forms
US10076499B2 (en) 2006-08-25 2018-09-18 Purdue Pharma L.P. Tamper resistant dosage forms
US11304908B2 (en) 2006-08-25 2022-04-19 Purdue Pharma L.P. Tamper resistant dosage forms
US11826472B2 (en) 2006-08-25 2023-11-28 Purdue Pharma L.P. Tamper resistant dosage forms
US9775811B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US11298322B2 (en) 2006-08-25 2022-04-12 Purdue Pharma L.P. Tamper resistant dosage forms
US11904055B2 (en) 2006-08-25 2024-02-20 Purdue Pharma L.P. Tamper resistant dosage forms
US11304909B2 (en) 2006-08-25 2022-04-19 Purdue Pharma L.P. Tamper resistant dosage forms
US9775810B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US11938225B2 (en) 2006-08-25 2024-03-26 Purdue Pharm L.P. Tamper resistant dosage forms
US9763933B2 (en) 2006-08-25 2017-09-19 Purdue Pharma L.P. Tamper resistant dosage forms
US9770417B2 (en) 2006-08-25 2017-09-26 Purdue Pharma L.P. Tamper resistant dosage forms
US9770416B2 (en) 2006-08-25 2017-09-26 Purdue Pharma L.P. Tamper resistant dosage forms
US9775808B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9775812B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9775809B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US20080233156A1 (en) * 2006-10-11 2008-09-25 Alpharma, Inc. Pharmaceutical compositions
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US20090124650A1 (en) * 2007-06-21 2009-05-14 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol
US20100152221A1 (en) * 2007-12-17 2010-06-17 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
US20100266645A1 (en) * 2007-12-17 2010-10-21 Alfred Liang Pharmaceutical compositions
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
US20090196890A1 (en) * 2007-12-17 2009-08-06 Alpharma Pharmaceuticals, Llc Pharmaceutical compositions
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US8383152B2 (en) 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US20090202634A1 (en) * 2008-01-25 2009-08-13 Grunenthal Gmbh Pharmaceutical dosage form
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US20110082214A1 (en) * 2008-05-09 2011-04-07 Gruenthal Gmbh Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US8460640B2 (en) 2008-12-12 2013-06-11 Paladin Labs, Inc. Narcotic drug formulations with decreased abuse potential
US20110237615A1 (en) * 2008-12-12 2011-09-29 Paladin Labs Inc. Narcotic Drug Formulations with Decreased Abuse Potential
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US20110020451A1 (en) * 2009-07-22 2011-01-27 Grunenthal Gmbh Tamper-resistant dosage form for oxidation-sensitive opioids
US20110077238A1 (en) * 2009-09-30 2011-03-31 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
US8901113B2 (en) 2009-09-30 2014-12-02 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
US10155044B2 (en) 2009-09-30 2018-12-18 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US20110182807A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and Dosage Form to Confirm Compliant Use of a Bioactive Agent
WO2011091413A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and dosage form to confirm compliant use of a bioactive agent
US20110182827A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and Dosage Form to Confirm Compliant Use of a Bioactive Agent
US20110182824A1 (en) * 2010-01-25 2011-07-28 Fuisz Richard C Method and dosage form to confirm compliant use of a bioactive agent
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
WO2012054067A1 (en) * 2010-10-20 2012-04-26 Howard William W Benzonatate compositions and methods of use
US11590082B2 (en) 2010-12-22 2023-02-28 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US11911512B2 (en) 2010-12-22 2024-02-27 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9393206B2 (en) 2010-12-22 2016-07-19 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9572779B2 (en) 2010-12-22 2017-02-21 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US10966932B2 (en) 2010-12-22 2021-04-06 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9744136B2 (en) 2010-12-22 2017-08-29 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9750703B2 (en) 2010-12-22 2017-09-05 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9872837B2 (en) 2010-12-22 2018-01-23 Purdue Pharma L.P. Tamper resistant controlled release dosage forms
US9861584B2 (en) 2010-12-22 2018-01-09 Purdue Pharma L.P. Tamper resistant controlled release dosage forms
US8808740B2 (en) 2010-12-22 2014-08-19 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9707180B2 (en) 2010-12-23 2017-07-18 Purdue Pharma L.P. Methods of preparing tamper resistant solid oral dosage forms
US9895317B2 (en) 2010-12-23 2018-02-20 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10864164B2 (en) 2011-07-29 2020-12-15 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10688184B2 (en) 2012-11-30 2020-06-23 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US9101636B2 (en) 2012-11-30 2015-08-11 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US9320796B2 (en) 2012-11-30 2016-04-26 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US11857629B2 (en) 2012-11-30 2024-01-02 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US10441657B2 (en) 2012-11-30 2019-10-15 Abuse Deterrent Pharmaceuticals, Llc Methods and compositions for self-regulated release of active pharmaceutical ingredient
US10792364B2 (en) 2013-02-05 2020-10-06 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9545448B2 (en) 2013-02-05 2017-01-17 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9662399B2 (en) 2013-02-05 2017-05-30 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9579389B2 (en) 2013-02-05 2017-02-28 Purdue Pharma L.P. Methods of preparing tamper resistant pharmaceutical formulations
US10478504B2 (en) 2013-02-05 2019-11-19 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9149533B2 (en) 2013-02-05 2015-10-06 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9655971B2 (en) 2013-02-05 2017-05-23 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US11576974B2 (en) 2013-02-05 2023-02-14 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10195152B2 (en) 2013-03-15 2019-02-05 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10517832B2 (en) 2013-03-15 2019-12-31 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9616030B2 (en) 2013-03-15 2017-04-11 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9980917B2 (en) 2014-03-26 2018-05-29 Sun Pharma Advanced Research Company Ltd. Abuse deterrent immediate release coated reservoir solid dosage form
US9616029B2 (en) 2014-03-26 2017-04-11 Sun Pharma Advanced Research Company Ltd. Abuse deterrent immediate release coated reservoir solid dosage form
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US11103581B2 (en) 2015-08-31 2021-08-31 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US10646485B2 (en) 2016-06-23 2020-05-12 Collegium Pharmaceutical, Inc. Process of making stable abuse-deterrent oral formulations
US10968179B2 (en) * 2019-03-11 2021-04-06 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10927096B2 (en) 2019-03-11 2021-02-23 Nocion Therapeutics, Inc. Ester substituted ion channel blockers and methods for use
US11377422B2 (en) 2019-03-11 2022-07-05 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US11512058B2 (en) 2019-03-11 2022-11-29 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10786485B1 (en) 2019-03-11 2020-09-29 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10934263B2 (en) 2019-03-11 2021-03-02 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US11603355B2 (en) 2019-03-11 2023-03-14 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US11643404B2 (en) 2019-03-11 2023-05-09 Nocion Therapeutics, Inc. Ester substituted ion channel blockers and methods for use
US10828287B2 (en) 2019-03-11 2020-11-10 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10933055B1 (en) 2019-11-06 2021-03-02 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US10842798B1 (en) 2019-11-06 2020-11-24 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US11696912B2 (en) 2019-11-06 2023-07-11 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
US11332446B2 (en) 2020-03-11 2022-05-17 Nocion Therapeutics, Inc. Charged ion channel blockers and methods for use
CN111569029B (en) * 2020-05-18 2021-09-17 成都中医药大学 Traditional Chinese medicine composition for improving respiratory tract mucosa immunologic function and preparation method thereof
CN111569029A (en) * 2020-05-18 2020-08-25 赖宇 Traditional Chinese medicine composition for improving respiratory tract mucosa immunologic function and preparation method thereof

Also Published As

Publication number Publication date
US20040126324A1 (en) 2004-07-01
US7655256B2 (en) 2010-02-02
JP2003113074A (en) 2003-04-18
EP1293195A1 (en) 2003-03-19
KR20030024583A (en) 2003-03-26

Similar Documents

Publication Publication Date Title
US20030068276A1 (en) Dosage forms
US20030059397A1 (en) Dosage forms
US9675610B2 (en) Abuse-proofed dosage form
US20040126428A1 (en) Pharmaceutical formulation including a resinate and an aversive agent
US9700516B2 (en) Compositions and methods for reducing overdose
EP1515702B1 (en) Abuse-protected administration form
EP1558257B1 (en) Dosage form that is safeguarded from abuse
EP1558221B1 (en) Dosage form that is safeguarded from abuse
US20160346274A1 (en) Abuse-resistant drug formulations with built-in overdose protection
US20060110327A1 (en) Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20060177380A1 (en) Methods and compositions for deterring abuse of orally administered pharmaceutical products
JP6258214B2 (en) Tablets that can cope with misuse by injection
KR20140079441A (en) Pharmaceutical compositions
JP2019070013A (en) Compositions and methods for reducing overdose
AU2012201450A1 (en) Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20160213680A1 (en) Compositions and methods using flumazenil with opioid analgesics for treating pain and/or addiction, and with diversion and/or overdose mitigation
KR20030024582A (en) Dosage Forms

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROHM AND HAAS COMPANY, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUGHES, LYN;BELLAMY, SIMON ANDREW;REEL/FRAME:014676/0298;SIGNING DATES FROM 20020218 TO 20020220

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION