CA2229650C - Multiphase active ingredient-containing formulations - Google Patents

Multiphase active ingredient-containing formulations Download PDF

Info

Publication number
CA2229650C
CA2229650C CA002229650A CA2229650A CA2229650C CA 2229650 C CA2229650 C CA 2229650C CA 002229650 A CA002229650 A CA 002229650A CA 2229650 A CA2229650 A CA 2229650A CA 2229650 C CA2229650 C CA 2229650C
Authority
CA
Canada
Prior art keywords
active ingredient
phase
matrix
particles
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002229650A
Other languages
French (fr)
Other versions
CA2229650A1 (en
Inventor
Joerg Rosenberg
Jurgen Zeidler
Jorg Breitenbach
Gunther Berndl
Andreas Kleinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Deutschland GmbH and Co KG
Original Assignee
Abbott GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott GmbH and Co KG filed Critical Abbott GmbH and Co KG
Publication of CA2229650A1 publication Critical patent/CA2229650A1/en
Application granted granted Critical
Publication of CA2229650C publication Critical patent/CA2229650C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50

Abstract

A solid or semisolid, at least two-phase active ingredient-containing formulation in which there is multiparticulate incorporation of one of the two phases into a matrix of the other phase, and at least one of the phases contains at least one active ingredient, obtainable by introducing particles of one phase into the other phase in a plastic state, and shaping the material while still plastic.

Description

Multiphase active. ingredient-containing formulations Description The present invention relates to solid, at least two-phase active ingredient-containing formulations in which there is multipaucticulate incorporation of one of the two phases into a matrix of the other phase, and at least one of the phases contains at least one active ingredient, obtainable by introducing particles of one phase into the other phase in a plastic state, and shaping the material while still plastic. The invention furthermore relates to a process for producing such forms.
A problem which frequently occurs in pharmaceutical technology is to introduce mutually incompatible active ingredients into a drug form.
This is solved in the prior art by producing laminated or multilayered tablets. These tablet forms permit not only incompatible active ingredients to be separated but also the initial and maintenance doses to be separated in controlled release drug forms. These drug forms are normally obtained by conventional compressing. However, this requires specially designed tableting machines and at least two filling and compression stations (cf. "Pharmazeutische Technologies, Georg Thieme Verlag, 4th edition, 1993, pages 300 et seq.). This process is, however, elaborate and costly.
It is furthermore known to produce mixed granule tablets by compressing a mixture of differently pretreated granules. This entails, for example, processing untreated medicinal substances (initial dose) together with medicinal substances enveloped in tats or coated with lacquer (maintenance dose) (cf. R. Voigt, Lehrbuch der pharmazeutischen Technologie, 1987, page 225). This process is also relatively elaborate.
EP-A 580 860 discloses that it is possible to meter water or solvent in during the extrusion process. However, metering in of active ingredients is not described.

1a SUMMARY OF THE INVENTION
It is to say that an object of the invention is a solid pharmaceutical composition comprising at least two phases. One these phases forms a matrix which consists essentially of one or more components selected from the group consisting of homo- or copolymer of N-vinylpyrrolidone, cellulose ether, hydroxyalkylcellulose, celluloseester and an acrylate- or methacrylate containing polymer and which contains at feast one pharmaceutically active ingredient in the form of a solid solution. The other phase contains at least one active ingredient which is homogeneously incorporated in the form of particles into the matrix phase.
It is an object of the present invention to find a.simple process for producing active ingredient-containing forms which permits the introduction of mutually incompatible active ingredients or .. o.z. o4soAomss active ingredients of different release into one drug form or i~he production of forms with multiphase release characteristics.
We have found that this object is achieved by the formulations defined at the outset.
It is preferred according to the invention to incorporate active ingredient-containing particles into a melt which may likewise contain active ingredient or else be free of active ingredient,.
Possible particles according to the invention are granules, pellets or crystal particles, and crystal particles are preferably coated.
The particles can be obtained in a conventional way, for example by wet granulation of one or more active ingredients with conventional additives. If the active ingredient automatically results as granules in the preparation process, it can also be employed without further treatment with additives. Granules can also be obtained in a conventional way by melt extrusion of an active ingredient-containing polymer melt and subsequent shaping by hot or cold cut, prilling or drop-formation processes. Pellets can also be produced by conventional processes, for example by dry granulation. Coated or uncoated active ingredient crystals can also be obtained by processes known to the skilled worker.
The particle size is not critical. For ease of handling of the particles it is advisable to use particles with a size of the order of from 0.01 to 3 mm, preferably 0.5 to 2 mm.
Particles for the purpose of this invention are also microtablets. Microtablets can likewise be produced in a conventional way.
As already mentioned, the particles can consist of pure active ingredient without containing other additives. If additive-containing particles are employed, the nature of the additives depends in particular on the release rate required for the particulate phase, ie. whether the particulate phase is to be rapid or slow release.
If coated~active ingredient crystals are used, the coating may have purely stabilizing or else release-slowing properties. It is also possible to employ coatings which dissolve in particular pH
ranges.
It is possible in this way to obtain combination drug forms in which the active ingredients) can be released from the particulate portions at various points in the digestive tract.
Examples of possible coatings of this type are polyacrylates or methacrylic acid copolymers (Eudragit types).
The content of the aliquot added as particles can be from 0.01 to 90%, preferably 0.1 to 70%, particularly preferably 0.5 to 50%, of the total weight of the finished active ingredient-containing form.
In the formulation according to the invention there is multiparticulate incorporation of the particles in another phase.
Thus the other phase forms the matrix far the particulate phase.
The matrix phase may contain active ingredient or be free of active ingredient. An active ingredient-containing matrix phase is preferred.
It is Possible in principle to employ all substances which can be melted or softened to constitute the matrix phase as long as they do not decompose under the processing conditions. The required thermoplasticity can also be brought out by adding suitable auxiliaries.
Examples of suitable constituents of the matrix are melt-processable polymeric binders. Suitable as such are uncrosslinked homo- or copolymers of N-vinylpyrrolidone with Fikentscher K values of from 12 to 120, preferably 20 to 100, with suitable comonomers preferably being vinyl esters such as vinyl propionate or vinyl butyrate or, in particular, vinyl acetate, or else N-vinylimidazole or N-vinylcaprolactam.
Further suitable binders are cellulose derivatives such as cellulose ethers, for example cellulose alkyl ethers such as methyl- or ethylcellulose or hydroxyalkylcelluloses such as hydroxypropylcellulose, also cellulose esters such as cellulose acetate, cellulose phthalate, cellulose acetate propionate, cellulose acetate phthalate or the like. Also suitable as binders are acrylate- or methacrylate-containing polymers, for example Eudragit types.
Also suitable according to the invention are matrix polymers Which can be absorbed or degraded in the body. These include polylactic acid and copolymers thereof, poly(ortho)esters.
Polyamides, polyphosphazenes or polyurethanes are also suitable.
* trademarks ° CA 02229650 1998-03-11 .. o.z. o4soeoliss Likewise suitable as matrix polymers are starch or dextrins_ Suitable matrixes according to the invention are also those composed of sugar alcohols such as erythritol, sorbitol, maltitol, mannitol, isomalt, mono- or disaccharides such as fructose or glucose.
Also suitable as matrix constituents are fatty acid glycerides and/or fatty acid polyethylene glycol esters. The latter can also be packed as semisolid extrudates with the incorporated particles into capsules. It is particularly advantageous that the softening point of these substances is relatively low and thus reliable metering in is ensured without the risk of melting the added particles. Such easily softening formulations are likewise suitable for producing suppositories and chewable compositions..
Suitable matrix polymers are also polyethylene glycols with molecular weights in the range from 1000 to 20,000.
It is furthermore possible to incorporate conventional physiologically tolerated ancillary substances into the matrix, for example bulking agents, lubricants, mold release agents, plasticizers, blowing agents, stabilizers, dyes, flavorings or flow regulators.
Examples of bulking agents are inorganic bulking agents such a~~
the oxides of magnesium, aluminum, silicon, titanium etc. in a concentration of from 0.01 to 50, preferably from 0.20 to 20, of the total weight of the drug form.
Examples of lubricants are stearates of aluminum, calcium and magnesium, and talc and silicones in a concentration of from 0.1 to 5, preferably from 0.1 to 3, ~ of the total weight of the form.
Examples of disintegration promoters which can be employed are sodium carboxymethyl starch and crospovidone. It is also possible to employ wetting agents such as sodium lauryl sulfate and sodium docusate. Salts such as Na2C03 or NaHC03 can also be employed.
Examples of plasticizers comprise low molecular weight poly(alkylene oxides), such as polyethylene glycols), ~5 poly(propylene glycols), poly(ethylene/propylene glycols);
organic plasticizers with a low molecular weight such as glycerol, pentaerythritol, glycerol monoacetate, diacetate or ' O.Z. 0480/01168 triacetate, propylene glycol, sodium diethyl sulfosuccinate anct similar compounds added in concentrations of from 0.5 to 15, preferably from 0.5 to 5, $ of the total weight of the drug form.
5 Different coloring of the various phases allows the forms to be:
made attractive with high recognizability. Examples of dyes are:
known azo dyes, organic and inorganic pigments, or coloring agents of natural origin. Inorganic pigments are preferred, in concentrations of from 0.001 to 10, preferably from 0.5 to 3, of the total weight of,the drug form.
Flavorings and aromas such as vanillin are preferably present i.n the carrier matrix.
It is also possible furthermore to add other additives which improve the flow properties of the mixture or act as mold release agents, eg. animal or vegetable fats, preferably in their hydrogenated form, especially those which are solid at room temperature. These fats preferably have a melting point of 50°C or above. Triglycerides of C12, Ci4. Cis and Cle fatty acids are preferred. The same function can also be carried out by waxes such as carnauba wax. These additives can be added alone without addition of bulking agents or plasticizers. These fats and Waxes pan advantageously be admixed alone or together with mono- and/or diglycerides or phosphatides, especially lecithin. The mono- and diglycerides are preferably derived from the fat types described above, ie. C12, Ci4. Cis and C18 fatty acids. The total amount of:
fats, waxes, mono- and diglycerides and/or lecithins is 0.1-30, Preferably 0.1-5, ~ of the total weight of the drug form.
Examples of flow regulators which can be used are aerosils or talc.
=t is also possible furthermore to add stabilizers such as antioxidants, light stabilizers, hydroperoxide destroyers, radical scavengers and stabilizers against microbial attack.
Ancillary substances for the purpose of the invention also mean substances for producing a solid solution with the pharmaceutical active ingredient. Examples of these ancillary substances are pentaerythr~itol and pentaerythritol tetraacetate, polymers such as polyethylene oxides and polypropylene oxides and their block copolymers (poloxamers), phosphatides such as lecithin, homo- and copolymers of vinylpyrrolidone, surfactants such as polyoxyethylene 40 stearate, and citric and succinic acids, bile 0.2. 0480/01168 acids, sterols and others as indicated, for example, in J.L. Ford, Pharm. Acta Helv. 61, 69-88 (1986).
Bases or acids added to control the solubility of an active ingredient are also regarded as pharmaceutical ancillary substances (see, for example, K_ Thoma et a1_, Pharm_ Ind_ 51, 98-101 (1989)).
Suitable active ingredients for the purpose of this invention are in principle all active ingredients which do not decompose under the processing conditions.
The process according to the invention is suitable, for example:, for processing the following active ingredients:
acebutolol, acetylcysteine, acetylsalicylic acid, acyclovir, alprazolam, alfacalcidol, allantoin, allopurinol, ambroxol, amikacin, amiloride, aminoacetic acid, amiodarone, amitriptyline, amlodipine, amoxicillin, ampicillin, ascorbic acid, aspartame, astemizole, atenolol, beclomethasone, benserazide, benzalkoniumhydrochloride, benzocaine, benzoic acid, betamethasone, bezafibrate, biotin, biperiden, bisoprolol, bromazepam, bromhexine, bromocriptine, budesonide, bufexamac, buflomedil, buspirone, caffeine, camphor, captopril, carbamazepine, carbidopa, carboplatin, cefachlor, cefalexin, cefadroxil, cefazolin, cefixime, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, selegiline, chloramphenicol, chlorhexidine, chlorpheniramine, chlortalidone, choline, cyclosporin, cilastatin, cimetidine, ciprofloxacin, cisapride, cisplatin, clarithromycin, clavulanic acid, clomipramine, clonazepam, clonidine, clotrimazole, codeine, cholestyramine, cromoglycic acid, cyanocobalamin, cyproterone, desogestrel, dexamethasone, dexpanthenol, dextromethorphan, dextropropoxiphene, diazepam, diclofenac, digoxin, dihydrocodeine, dihydroergotamine, dihydroergotoxin, diltiazem,.
diphenhydramine, dipyridamole, dipyrone, disopyramide, domperidone, dopamine, doxycycline, enalapril, ephedrine, epinephrin, ergocalciferol, ergotamine, erythromycin, estradio7_, ethinylestradiol, etoposide, Eucalyptus globulus, famotidine, felodipine, fenofibrate, fenoterol, fentanyl, flavin mononucleotide, fluconazole, flunarizine, fluorouracil, fluoxetine~, flurbiprofen, furosemide, gallopamil, gemfibrozil, gentamicin, Gingko biloba, glibenclamide, glipizide, clozapine,.
Glycyrrhiza glabra, griseofulvin, guaifenesin, haloperidol, heparin, hyaluronic acid, hydrochlorothiazide, hydrocodone, hydrocortisone, hydromorphone, ipratropium hydroxide, ibuprofen, o.z. o4so~omsa imipenem, indomethacin, iohexol, iopamidol, isosorbide dinitrat.e, isosorbide mononitrate, isotretinoin, ketotifen, ketoconazole, ketoprofen, ketorolac, labetalol, lactulose, lecithin, levocarnitine, levodopa, levoglutamide, levonorgestrel, levothyroxine, lidocaine, lipase, imipramine, lisinopril, loperamide, lorazepam, lovastatin, medroxypregesterone, menthol, methotrexate, methyldopa, methylprednisolone, metoclopramide, metoprolol, miconazole, midazolam, minocycline, minoxidil, misoprostol, morphine, multivitamin mixtures or combinations and mineral salts, n-methylephedrine, naftidrofuryl, naproxen, neomycin, nicardipine, nicergoline, nicotinamide, nicotine, nicotinic acid, nifedipine, nimodipine, nitrazepam, nitrendipine, nizatidine, norethisterone, norfloxacin, norgestrel, nortriptyline, nystatin, ofloxacin, omeprazole, ondansetron, pancreatin, panthenol, pantothenic acid, paracetamol, penicillin g, penicillin v, phenobarbital, pentoxifylline, phenoxymethylpenicillin, phenylephrine, phenylpropanolamine, phenytoin, piroxicam, polymyxin b, povidone-iodine, pravastatin, prazepam, prazosin, prednisolone, prednisone, propafenone, propranolol, proxyphylline, pseudoephedrine, pyridoxine, quinidine, ramipril, ranitidine, reserpine, retinol, riboflavir.~, rifampZcin, rutoside, saccharin, salbutamol, salcatonin, salicylic acid, simvastatin, somatropin, sotalol, spironolactone,.
sucralfate, sulbactam, sulfamethoxazole, sulfasalazine, sulpiride, tamoxifen, tegafur, teprenone, terazosin, terbutalirae, terfenadine, tetracycline, theophylline, thiamine, ticlopidine, timolol, tranexamic acid, tretinoin, triamcinolone acetonide, triamterene, trimethoprim, troxerutin, uracil, valproic acid, vancomycin, verapamil, vitamin e, folinic acid, zidovudine, zotepine.
Active ingredients for the purpose of the invention are also vitamins and minerals, and crop treatment agents and insecticides. The vitamins include vitamins of A group, of the B
group, by which are meant, besides B1, B2. Bs and B1z and nicotinic acid and nicotinamide, also compounds with vitamin H
properties such as adenine, choline, pantothenic acid, biotin, adenylic acid, folic acid, orotic acid, pangamic acid, carnitine, p-aminobenzoic acid, myo-inositol and lipoic acid, and vitamin C, vitamins of the D group, E group, F group, H group, I and J
groups, K group and P group. Active ingredients for the purpose' of the invention also include therapeutic peptides.
In a few cases there may be formation of solid solutions. The term "solid solutions" is familiar to the skilled worker, for example from Chiou and Riegelman, J. Pharm. Sci. ,f~0, 1281-1302 .. 0.Z. 0480/01168 (1971). In solid solutions, the active ingredient is in the form of a molecular dispersion in the matrix.
The active ingredient content per dose unit and the concentration may be varied within wide limits depending on the activity and release rate. The only condition is that they are sufficient to achieve the required effect. Thus, the active ingredient concentration can be in the range form 0.1 to 90, preferably from 0.5 to 60, % by weight. These data likewise apply to the food supplement sector, such as vitamin products.
The formulations according to the invention can be produced as described below:
Firstly, the matrix components are converted into a plastic state. This may entail either a premix of all the components being plasticized, or first the polymeric binder being softened and then the other components, ie. active ingredients and/or other ancillary substances, being added thereto. The plasticization is effected by input of energy. Depending an the:
composition of the matrix, the components soften in the range from 40 to 190°C, preferably 50 to 150°C. The suitable temperature range in each case depends on the glass transition temperature of the polymeric binders, the properties of the active ingredients.
which are added where appropriate, and any plasticizers which a:re added. This is preferably done in the absence of solvents such as water or organic solvents. However, it may also be advisable to add small amounts of water as plasticizer. The optimal temperature range can be established by a few simple tests. The mixture of matrix components should soften so that the corresponding plastic material has a specific viscosity of from 0.0007 to 10,000 Pa~s, preferably 0.001 to 3000 Pa.s (at 150°C).
The softening process can take place in an extruder, a kneader or a mixing reactor, with the plastic material being homogenized by longitudinal and transverse mixing.
The plasticization preferably takes place in an extruder havinc_~
one or more screws which may rotate in the same direction or opposite directions, especially in a twin screw extruder. The latter can be operated with or without kneading elements, but use of kneading elements is preferred because mixing is better.

o.z. o~ao~oms8 The particulate phase is added during the plasticization process.
On use of an extruder, this can take place in the hot zone (hot.
feed) or in the cold zone. The particles are preferably fed in continuously via weigh feeders.
The temperature at which addition of the particulate phase takes place depends on the nature of the active ingredients and the type of release profiles required. If, for example, pellets are added, it may be desirable for~these to melt on the surface because this leads to an increase in the surface area, which facilitates onset of the diffusion process after administration..
On the other hand, however, the temperature should be low enough' for separate phases to be maintained. The required temperature can be established by a few simple tests.
After incorporation of the particulate phase into the matrix phase, the still plastic material is shaped to the required dosage forms.
If, for example, it is wished to incorporate the particulate phase into a crystalline sugar matrix, it is advisable for the plastic material to be cooled, before the shaping, with stirring to such an extent that it can still be shaped but extrusion does not result in a quenched, amorphous, glassy melt.
The still plastic material can be extruded through a die or breaker plate and then shaped in a conventional way to tablets, chewable tablets, pastilles, buccal tablets, sublingual tablets, chewing compositions such as chewing gum or suppositories, or be packed in capsules. Shaping preferably takes place by calendering or by injection molding. Multilayer tablets can also be produced by the conventional coextrusion process. It is also possible to produce multilayer tablets by injection molding.
It is possible with the aid of the process according to the invention to produce in a simple manner dosage forms with very different release profiles.
The compositions have at least two phases, but may also contain several phases if different particulate phases are used.
It is thus possible, for example, to incorporate mutually incompatible active ingredients each as separate particulate O.Z. 0480/01168 phases. In this case, the surrounding matrix performs the function of an envelope and may be free of active ingredient.
In the case of active ingredients with very different physical properties, optimal particulate formulations of each can likewise be incorporated into one dosage form in a simple manner.
It is possible and particularly advantageous to produce dosage 1o forms with stepped release profiles. Thus, for example, slow-release granules or pellets of an active ingredient can he incorporated into an instant release matrix, particularly beneficially into a solid solution, which likewise contains this active ingredient. It is possible in this way to achieve a rapid rise in level and a prolonged plateau-like release profile with one dosage form. Any desired sequence profiles can be adjusted by using granules of one and the same active ingredient but with different dissolving characteristics. It is also possible to adjust profiles with a delayed onset of release of active Ingredient and repeat profiles.
Compared with conventional forms obtained by compression, the forms obtained from plasticized materials display better homogeneity and, on production of solid forms, lower porosity and better mechanical stability.
Examples General method The formulations according to the invention were produced in a twin screw extender (Werner & Pfleiderer ZSK-40, Stuttgart). The extruder consisted of a total of five separate temperature-controllable sections. The last section immediately before the die was provided with a feed port which was open at the top and through which the material was added to the plasticized melt. The melt was then extruded in the form of a ribbon through a 14 cm-wide slit die and passed immediately between two counter-rotating calender molding rolls. These molding rolls ha.s on their surfaces depressions in the shape of half tablets, so that the ribbon of melt was shaped to a ribbon of tablets. The output of the extruder b was 20 kg/h. The screws rotated at from 80 to 130.revolutions per minute.

' .. CA 02229650 1998-03-11 O.Z. 0480/01168 Example 1 A mixture of 69 $ by weight of polyvinylpyrrolidone with a R
value of 30, 30 ~ by weight of ibuprofen and 1 ~ by weight of 5 highly disperse silica (Aerosil~200) was plasticized in the extruder at from 60 to 80°C. 6 kg/h of pure crystalline paracetamol were metered in through the teed port shortly before the die. The melt was transparent without added paracetamol, but became cloudy on addition of crystalline paracetamol, which did.
10 not dissolve therein. The melt was then shaped to oblong tablets with an average weight of 600 mg in the molding roll calender.
Example 2 15 Oblong tablets were produced as in Example 1, but replacing pure crystalline paracetamol by crystalline paracetamol which had been film-coated with an isopropanolic solution of ethylcellulose.
Example 3 A mixture of 25 % by weight of ascorbic acid, 8 % by weight of tocopherol acetate (TPSD 50 from BASF, 50 % by weight formulation with a lactose/caseinate matrix), 30 % by weight of hydroxypropylcellulose with'an mw of 80,000 dalton (Rlucel~EF
from Aqualon), 14,4 % by weight of isomalt F (from Palatinit, Mannheim), 1 % by weight of lecithin, 1 % by weight of orange flavor and 0.6 ~ by weight of aspartame was extruded at I00-120°C.
4 kg/h of beta-carotene pellets with particle sizes in the range from 100 to 900 ~ (Betavit~ from BASF, starch-dusted, 10 % by weight beta-carotene formulation with a gelatin/lactose matrix) were metered in through the feed port before the die. The extruded melt was shaped to oblong tablets with an average weight ' of 1000 mg in the molding roll calender. The red beta-carotene pellets were visible as separate particles in the tablet.

Claims (4)

1. A solid pharmaceutical composition comprising at least two phases, wherein one phase forms a matrix which consists essentially of one or more components selected from the group consisting of homo- or copolymer of N-vinylpyrrolidone, cellulose ether, hydroxyalkylcellulose, celluloseester and an acrylate- or methacrylate containing polymer and which contains at least one pharmaceutically active ingredient in the form of a solid solution and at least one other phase containing at least one active ingredient is homogeneously incorporated in the form of particles into the matrix phase.
2. The composition as claimed in claim 1, wherein said particles are in the form of crystals, pellets, microtablets or granules.
3. The composition as claimed in any one of claims 1 and 2, wherein a flavoring is present in the matrix phase.
4. The composition as claimed in any one of claims 1 to 3, which is obtained by incorporating the particles of said other phase into the matrix phase during or after plasticization and shaping the material while still plastic.
CA002229650A 1997-03-12 1998-03-11 Multiphase active ingredient-containing formulations Expired - Lifetime CA2229650C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19710009.0 1997-03-12
DE19710009A DE19710009A1 (en) 1997-03-12 1997-03-12 Multi-phase preparation forms containing active ingredients

Publications (2)

Publication Number Publication Date
CA2229650A1 CA2229650A1 (en) 1998-09-12
CA2229650C true CA2229650C (en) 2006-08-22

Family

ID=7822983

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002229650A Expired - Lifetime CA2229650C (en) 1997-03-12 1998-03-11 Multiphase active ingredient-containing formulations

Country Status (6)

Country Link
EP (1) EP0864326B1 (en)
JP (1) JP4308339B2 (en)
AT (1) ATE268167T1 (en)
CA (1) CA2229650C (en)
DE (2) DE19710009A1 (en)
ES (1) ES2223089T3 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268349B2 (en) 2003-08-28 2012-09-18 Abbott Laboratories Solid pharmaceutical dosage form
US8309060B2 (en) 2003-08-06 2012-11-13 Grunenthal Gmbh Abuse-proofed dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8383152B2 (en) 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US9192578B2 (en) 2008-08-20 2015-11-24 Board Of Regents, The University Of Texas System Hot-melt extrusion of modified release multi-particulates
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840895A1 (en) 1998-09-08 2000-03-16 Bosch Gmbh Robert Windscreen wiper drive device
DE19934610A1 (en) 1999-07-23 2001-01-25 Bayer Ag Rapid-release extrudates containing low viscosity hydroxypropylcellulose, useful for formulating plant protecting agents and oral pharmaceutical and veterinary compositions
WO2001034119A2 (en) 1999-11-12 2001-05-17 Abbott Laboratories Inhibitors of crystallization in a solid dispersion
DE10038571A1 (en) * 2000-08-03 2002-02-14 Knoll Ag Compositions and dosage forms for use in the oral cavity in the treatment of mycoses
NZ518216A (en) * 2000-08-09 2004-11-26 Panacea Biotec Ltd Pharmaceutical compositions of anti-tubercular drugs and process for their preparation
US8128957B1 (en) 2002-02-21 2012-03-06 Valeant International (Barbados) Srl Modified release compositions of at least one form of tramadol
DE10221559B4 (en) * 2002-05-15 2009-04-30 Henkel Ag & Co. Kgaa Detergent and detergent tablets with active phase
DE10225115A1 (en) * 2002-06-06 2003-12-24 Henkel Kgaa Use of polymer matrices containing active ingredients in automatic dishwashing
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE102004032051A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
EP1737433B1 (en) 2004-04-12 2007-11-14 Pfizer Products Incorporated Taste-masked drugs in rupturing multiparticulates
DE102004046026A1 (en) * 2004-09-21 2006-03-23 Basf Ag Process for the preparation of dry powders of one or more carotenoids
WO2006125450A1 (en) * 2005-05-26 2006-11-30 Atef Mohammed Mostafa Darwish Rectal and vaginal suppositories containing misoprostol
WO2008065504A1 (en) 2006-11-30 2008-06-05 Pfizer Products Inc. Multiparticulates of spray-coated drug and polymer on a meltable core
US11116728B2 (en) 2006-11-30 2021-09-14 Bend Research, Inc. Multiparticulates of spray-coated drug and polymer on a meltable core
US9498431B2 (en) 2008-12-10 2016-11-22 Jianjian Xu Controlled releasing composition
CN114917328A (en) 2014-11-05 2022-08-19 雅培制药股份有限公司 Method for producing a composition with lipase activity with improved safety profile and a composition suitable for pharmaceutical use

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2627533A1 (en) * 1976-06-19 1977-12-29 Eckert Theodor Increasing solubility (rate) and resorption of digoxin - by using a solid dispersion with hydroxyalkyl theophylline or theobromine derivs.
HU198844B (en) * 1984-06-14 1989-12-28 Sandoz Ag Process for producing new galenic pharmaceutical composition ensuring retarded release of active ingredient
WO1993020138A2 (en) * 1992-03-30 1993-10-14 Alza Corporation Polymer system containing a partially soluble compound
DE4226753A1 (en) * 1992-08-13 1994-02-17 Basf Ag Preparations containing active substances in the form of solid particles
AU679937B2 (en) * 1992-11-18 1997-07-17 Johnson & Johnson Consumer Products, Inc. Extrudable compositions for topical or transdermal drug delivery
DE19504831A1 (en) * 1995-02-14 1996-09-05 Basf Ag Solid active substance preparations containing hydroxypropyl cellulose
DE19509806A1 (en) * 1995-03-21 1996-09-26 Basf Ag Storage stable dosage forms
IE80467B1 (en) * 1995-07-03 1998-07-29 Elan Corp Plc Controlled release formulations for poorly soluble drugs

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US8309060B2 (en) 2003-08-06 2012-11-13 Grunenthal Gmbh Abuse-proofed dosage form
US10130591B2 (en) 2003-08-06 2018-11-20 Grünenthal GmbH Abuse-proofed dosage form
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US8268349B2 (en) 2003-08-28 2012-09-18 Abbott Laboratories Solid pharmaceutical dosage form
US8691878B2 (en) 2003-08-28 2014-04-08 Abbvie Inc. Solid pharmaceutical dosage form
US8399015B2 (en) 2003-08-28 2013-03-19 Abbvie Inc. Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8333990B2 (en) 2003-08-28 2012-12-18 Abbott Laboratories Solid pharmaceutical dosage form
US8309613B2 (en) 2003-08-28 2012-11-13 Abbvie Inc. Solid pharmaceutical dosage form
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US8383152B2 (en) 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US9192578B2 (en) 2008-08-20 2015-11-24 Board Of Regents, The University Of Texas System Hot-melt extrusion of modified release multi-particulates
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10864164B2 (en) 2011-07-29 2020-12-15 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations

Also Published As

Publication number Publication date
DE19710009A1 (en) 1998-09-24
EP0864326A2 (en) 1998-09-16
EP0864326A3 (en) 2000-11-22
JP4308339B2 (en) 2009-08-05
DE59811487D1 (en) 2004-07-08
JPH10310518A (en) 1998-11-24
EP0864326B1 (en) 2004-06-02
ES2223089T3 (en) 2005-02-16
ATE268167T1 (en) 2004-06-15
CA2229650A1 (en) 1998-09-12

Similar Documents

Publication Publication Date Title
CA2229650C (en) Multiphase active ingredient-containing formulations
CA2284314C (en) A process for producing solid dosage forms
CA2229614C (en) The production of solid combination drug forms
US6120802A (en) Method of producing multi-layer medicaments in solid form for oral or rectal administration
CA2211033C (en) Solid active compound preparations
US6787157B1 (en) Multiphase active ingredient-containing formulations
US6488939B1 (en) Cleavable solid dosage forms and method for the production thereof
US6051253A (en) Production of solid drug forms
CA2230950C (en) Solid drug forms obtainable by extrusion of an isomalt-containing polymer/active ingredient melt
US20100048760A1 (en) Rapidly dispersable, particulate film-coating composition based on polyvinyl alcohol-polyether graft copolymers
JP4861552B2 (en) Method for producing cyclodextrin-containing solid dosage form
US6669879B1 (en) Method for producing solid dosing forms
ZA200503636B (en) Method for producing solid galentic formulations using a crosslinked non-thermoplastic carrier
EP0809487A1 (en) Solid active agent preparations containing hydroxypropyl cellulose
CA2568378A1 (en) Formulation obtained from a powder mixture comprising an inorganic pigment
CA2257547A1 (en) Process for producing solid dosage forms
CA2232357A1 (en) A process for producing solid drug forms

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20180312