CA2098738C - Controlled release oxycodone compositions - Google Patents

Controlled release oxycodone compositions

Info

Publication number
CA2098738C
CA2098738C CA002098738A CA2098738A CA2098738C CA 2098738 C CA2098738 C CA 2098738C CA 002098738 A CA002098738 A CA 002098738A CA 2098738 A CA2098738 A CA 2098738A CA 2098738 C CA2098738 C CA 2098738C
Authority
CA
Canada
Prior art keywords
oxycodone
hours
dosage form
mean
controlled release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002098738A
Other languages
French (fr)
Other versions
CA2098738A1 (en
Inventor
Benjamin Oshlack
Mark Chasin
John Joseph Minogue
Robert Francis Kaiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purdue Pharma LP
Original Assignee
Euro Celtique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25178688&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2098738(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Euro Celtique SA filed Critical Euro Celtique SA
Publication of CA2098738A1 publication Critical patent/CA2098738A1/en
Application granted granted Critical
Publication of CA2098738C publication Critical patent/CA2098738C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5015Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids

Abstract

A method for substantially reducing the range in daily dosages required to control pain in approximately 80 % of patients is disclosed whereby an oral solid controlled release dosage formulation having from about 10 to about 40 mg of oxycodone or a salt thereof is administered to a patient. The formulation provides a mean maximum plasma concentration of oxycodone from about 6 to about 60 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to about 30 ng/ml from about 10 to about 14 hours after repeated "q12h" (i.e.) every 12 hours) administration through steady-state conditions. Another embodiment is directed to a method for substantially reducing the range in daily dosages required to control pain in substantially all patients. The figure is a graph showing the mean plasma oxycodone concentration for a 10 mg controlled release oxycodone formulation prepared in accordance with the present invention and a study reference standard.

Description

$098738 CONTROLLED RELEASE OXYCODONE COMPOSITIONS
~ACR(3ROUND OF THE INVENTION
Surveys of daily dosages of opioid analgesics required to control pain suggest that an approximately eight-fold range in daily dosages is required to control pain in approximately 90% of patients. This extraordin-ary wide range in the appropriate dosage makes the titra-tion process particularly time consuming and resource consuming, as well as leaving the patient without acceptable pain control for an unacceptably long duration.
In the management of pain with opioid analgesics, it has been commonly observed and reported that there is considerable inter-individual variation in the response to a given dose of a given drug, and, therefore, consid-erable variability among patients in the dosage of opioid analgesic required to control pain without unacceptable side effects. This necessitates considerable effort on the part of clinicians in establishing the appropriate dose in an individual patient through the time consuming process of titration, which requires careful assessment of both therapeutic and side effects and dosage adjust-ments over a period of days and sometimes longer. before the appropriate dosage is determined. The American Pain Society's 3rd Edition of Principles of Analgesic Use in the Treatment of Acute Pain and Cancer Pain, by Mitchell B. Max, M.D., et al., published in l992, explains that one should "be aware that the optimal analgesic dose varies widely among patients. Studies have shown that in a11 age groups, there is enormous variability in doses of opioids required to provide relief, even among opioid naive patients~with identical surgical lesions.... This great variability underscores the need to write analgesic orders that include provision for supplementary doses, and to use intravenous boluses and infusions.to provide rapid relief of severe pain.... Give each analgesic an adequate trial by dose titration...before switching to another drug."
An opioid analgesic treatment which acceptably controls pain over a substantially narrower daily dosage range would, therefore, substantially improve the efficiency and quality of pain management.
It has previously been known in the art that con-trolled release compositions of opioid analgesics such as morphine, hydromorphone or salts thereof could be pre-pared in a suitable matrix. For example, U.S. Patent No.
4,990,341 (Goldie), also assigned to the assignee of the present invention, describes hydromorphone compositions wherein the dissolution rate in vitro of the dosage form, when measured by the USP Paddle Method at 100 rpm in 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37' C, is between 12.5 and 42.5% (by wt) hydromorphone released after 1 hour, between 25 and 55% (by wt) released after 2 hours, between 45 and 75% (by wt) released after 4 hours and between 55 and 85% (by wt) released after 6 hours.
SOMMARY OF THE INVENTION
The present invention provides a method for substantially improving the efficiency and quality of pain management.
The present invention, in another aspect, provides an opioid analgesic formulation which substantially improves the efficiency and quality of pain management.
Another aspect of the present invention can provide a method and formulations) which substantially reduce the approximately eight-fold range in daily dosages required to control pain in approximately 90~ of patients.
B
The present invention can also provide a method and formulations) which substantially reduce the variability in daily dosages and formulation requirements necessary to control pain in substantially a11 patients.
In yet another aspect the present invention provides a method for substantially reducing the time and resources need to titrate patients requiring pain relief on opioid analgesics.
The present invention can also provide controlled release opioid formulations which have substantially less inter-individual variation with regard to the dose of opioid analgesic required to control pain without unacceptable side effects.
The above aspects and others are attained by virtue of the present invention, which is related to a solid controlled release oral dosage form, the dosage form comprising from about 10 to about 40 mg of oxycodone or a salt thereof in a matrix wherein the dissolution rate in vitro of the dosage for~a, when measured by the USP Paddle Method at 1O0 rpm in 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37'C is between 12.5 and 42.5% (by wt) oxycodone released after 1 hour, between 25 and 56% (by wt) oxycodone released after 2 hours, between 45 and 75%
(by wt) oxycodone released after 4 hours and between 55 and 85% (by wt) oxycodone released after 6 hours, the in vitro release rate being substantially independent of pH, such that the peak plasma level of oxycodone obtained in vivo occurs between 2 and 4.5 hours after administration of the dosage form.
USP Paddle Method is the Paddle Method described, e.g., in U.S. Pharmacopoeia XXII (1990).
In the present specification, "substantially independent of pH" means that the difference, at any given time, between the amount of oxycodone released at, e.g., pH 1.6, and the amount released at any other pH, e.g., pH 7.2 (when measured in vitro using the USP Paddle Method at 100 rpm in 900 ml aqueous buffer), is 10% (by weight) or less. The amounts released being, in a11 cases, a mean of at least three experiments.
The present invention is further related to a method for substantially reducing the range in daily dosages re-quired to control pain in approximately 90% of patients, comprising administering an oral solid controlled release dosage formulation comprising from about 10 to about 40 mg of oxycodone or a salt thereof, said formulation pro-viding a mean maximum plasma concentration of oxycodone from about 6 to about 60 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to about 30 ng/ml from a mean of about 10 to about 14 hours after repeated "ql2h" (i.e., every 12 hour) administration through steady-state conditions.
The present invention is further related to a method for substantially reducing the range in daily dosages required to control pain in substantially a11 patients, comprising administering an oral solid controlled release dosage formulation comprising up to about 160 mg of oxycodone or a salt thereof, said formulation providing a mean maximum plasma concentration of oxycodone up to about 240 ng/ml from a mean of up to about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration up to about 120 ng/ml from a mean of about 10 to about 14 hours after repeated "ql2h" (i.e., every 12 hour) administration through steady-state conditions.
The present invention is further related to con-trolled release oxycodone formulations comprising from about 10 to about 40 mg oxycodone or a salt thereof, said formulations providing a mean maximum plasma concentra-tion of oxycodone from about 6 to about 60 ng/ml from a SUBSTITUTE SHEET

mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to ,about 30 ng/ml from about 10 to about 14 hours after repeated ql2h administration through steady-state 5 conditions.
The present invention is further related to con-trolled release oxycodone formulations comprising up to about 160 mg oxycodone or a salt thereof, said fonaula-tions providing a mean maximum plasma concentration of l0 oxycodone up to about 240 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration up to about 120 ng/ml from about 10 to about 14 hours after repeated ql2h administration through steady-state conditions.

The following drawings are illustrative of embodi-ments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
Figures 1-4 are graphs showing the time-effect curves for pain intensity differences and pain relief for Example 17;
Figure 5 is a graph showing the mean plasma oxy-codone concentration for a 10 mg controlled release oxycodone formulation prepared in accordance with the present invention and a study reference standard.
DETAILED DESCRIPTION
It has now been surprisingly discovered that the presently claimed controlled release oxycodone formula-tions acceptably control pain over a substantially narrower, approximately four-fold (l0 to 40 mg every 12 hours - around-the-clock dosing) in approximately 90% of patients. This is in sharp contrast to the approximately SUBSTITUTE SHEET
6 ~ ~ ~ ~ ~ ~ ~ '~ PCT/US92/10146 eight-fold range required for approximately 90% of patients for opioid analgesics in general.
The use of from about 10 mg to about 40 mg of 12-hourly doses of controlled-release oxycodone to control pain in approximately 90% of patients relative to a wider dosage range of other mu-agonist analgesics, indicated for moderate to severe pain, is an example of the unique characteristics of the present invention. It should also be appreciated that the remaining 10% of patients would also be successfully managed with 12-hourly controlled-release oxycodone over a relatively narrower dosage range than with the use of other similar analgesics. Substan-tially all of those remaining 10% of patients not managed with controlled release oxycodone, 10 mg to 40 mg every 12 hours, would be managed using dosages of greater than 40 mg every 12 hours through 160 mg every 12 hours util-izing any one of a number or multiples of formulation strengths such as 10, 20, 40, 80 and 160 mg unit dosages or combinations thereof. In contrast, the use of other similar analgesics such as morphine would require a wider range of dosages to manage the remaining 10% of patients.
For example, daily dosages of oral morphine equivalents in the range of 1 gram to more than 20 grams have been observed. Similarly, wide dosage ranges of oral hydro-morphone would also be required.
Morphine, which is considered to be the prototypic opioid analgesic, has been formulated into a 12 hour controlled-release formulations (i.e., MS Contin~
tablets, commercially available from Purdue Pharma, L.P.). Despite the fact that bath controlled-release oxycodone and controlled release morphine administered every 12 hours around-the-clock possess qualitatively comparable clinical pharmacokinetic characteristics, the oxycodone formulations of the presently claimed invention can be used over approximately 1/2 the dosage range as SUBSTITUTE SHEET

20987 3 ~
compared to commercially available controlled release morphine formulations (such as MS Continue) to control 90%
of patients with significant pain.
Repeated dose studies with the controlled release oxycodone formulations administered every 12 hours in comparison with immediate release oral oxycodone admin-istered every 6 hours at the same total daily dose result in comparable extent of absorption, as well as comparable maximum and minimum concentrations. The time of maximum concentration occurs at approximately 2 - 4.5 hours after oral administration with the controlled-release product as compared to approximately 1 hour with the immediate release product. Similar repeated dose studies with MS
Continue tablets as compared to immediate release morphine provide for comparable relative results as with the controlled release oxycodone formulations of the present invention.
There exists no substantial deviation from paral-lelism of the dose-response curves for oxycodone either in the forms of the controlled release oxycodone fonau-lations of the present invention, immediate release oral oxycodone or parenteral oxycodone in comparison with oral and parenteral opioids with which oxycodone has been compared in terms of dose-response studies and relative analgesic potency assays. Beaver, et al., "Analgesic Studies of Codeine and Oxycodone in Patients with Cancer.
II. Comparisons of Intramuscular Oxycodone with Intra-muscular Morphine and.Codeine", J. Pharmacol.. and Exp.
Ther., Vol. 207, No. l, pp. 10l-l08, 1978 reported comparable dose-response slopes for parenteral oxycodone as compared to parenteral morphine and comparable dose-response slopes for oral as compared to parenteral oxycodone.
A review of dose-response studies and relative analgesic assays of mu-agonist opioid analgesics, which include oxycodone, morphine, hydromorphone, levorphanol, A0987 3 8 , methadone, meperidine, heroin, a11 indicate no signifi-cant deviation from parallelism in their dose response relationships. This is so well established that it has become an underlining principal providing for establish-ing relative analgesic potency factors and dose ratios which are commonly utilized when converting patients from one mu-agonist analgesic to another regardless of the dosage of the former. Unless the dose-response curves are parallel, conversion factors would not be valid across the wide range of dosages involved when substituting one drug for another.
The clinical significance provided by the controlled release oxycodone formulations of the present invention at a dosage range from about 10 to about 40 mg every 12 hours for acceptable pain management in approximately 90%
of patients with moderate to severe pain, as compared to other opioid analgesics requiring approximately twice the dosage range provides for the most efficient and humane method of managing pain requiring repeated dosing. The expertise and time of physicians and nurses, as well as the duration of unacceptable pain patients must endure during the opioid analgesic titration process is substan-tially reduced through the efficiency of the controlled release oxycodone formulations of the present invention.
It is further clinically significant that a dose of about 80 mg controlled release oxycodone administered every 12 hours will provide acceptable pain relief management in, e.g., approximately 95% of patients with moderate to severe pain, and that about 160 mg controlled release oxycodone administered every 12 hours will pro-vide acceptable pain relief management in, e.g., approxi-mately a11 patients with moderate to severe pain.
In order to obtain a controlled release drug dosage form having at least a 12 hour therapeutic effect, it is usual in the pharmaceutical art to produce a formulation SUBSTITUTE SHEET

WO 93/1076s PCT/L1S92/10146 that gives a peak plasma level of the drug between about 4-8 hours after administration (in a single dose study).
The present inventors have surprisingly found that, in the case of oxycodone, a peak plasma level at between 2 -4.5 hours after administration gives at least 12 hours pain relief and, most surprisingly, that the pain relief obtained with such a formulation is greater than that achieved with formulations giving peak plasma levels (of oxycodone) in the normal period of up to 2 hours after administration.
A further advantage of the present composition, which releases oxycodone at a rate that is substantially independent of pH, is that it avoids dose dumping upon oral administration. In other words, the oxycodone is released evenly throughout the gastrointestinal tract.
The present oral dosage form may be presented as, for example, granules, spheroids or pellets in a capsule or in any other suitable solid form. Preferably, how-ever, the oral dosage form is a tablet.
The present oral dosage form preferably contains between 1 and 500 mg, most especially between 10 and 160 mg, of oxycodone hydrochloride. Alternatively, the dosage form may contain molar equivalent amounts of other oxycodone salts or of the oxycodone base.
The present matrix may be any matrix that affords in vitro dissolution rates of oxycodone within the narrow ranges required and that releases the oxycodone in a pH
independent manner. Preferably the matrix is a controll-ed release matrix, although normal release matrices having a coating that controls the release of the drug may be used. Suitable materials for inclusion in a controlled release matrix are (a) Hydrophilic polymers, such as gums, cellulose ethers, acrylic resins and protein derived materials. Of these polymers, the cellulose ethers, especially hydroxy-SUBSTITUTE SHEET

PCT/L)S92/ 10146 WO 93/1076~
alkylcelluloses and carboxyalkylcelluloses, are pre-ferred. The oral dosage form may contain between 1% and 80% (by weight) of at least one hydrophilic or hydrophobic polymer.
5 (b) Digestible, long chain (C8-C50, especially C12 C40) substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and waxes. Hydrocar-bons having a melting point of between 25° and 90°C are 10 preferred. Of these long chain hydrocarbon materials, fatty (aliphatic) alcohols are preferred. The oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
(c) Polyalkylene glycols. The oral dosage form may contain up to 60% (by weight) of at least one polyalkyl-ene glycol.
One particular suitable matrix comprises at least one water soluble hydroxyalkyl cellulose, at least one C12-C36, preferably C14-C22' aliphatic alcohol and, optionally, at least one polyalkylene glycol.
The at least one hydroxyalkyl cellulose is prefer-ably a hydroxy (C1 to C6) alkyl cellulose, such as hydroxypropylcellulose, hydroxypropylmethylcellulose and, especially, hydroxyethyl cellulose. The amount of the at least one hydroxyalkyl cellulose in the present oral dosage form will be determined, inter alia, by the precise rate of oxycodone release required. Preferably however, the oral dosage form contains between 5% and 25%, especially between 6.25% and 15% (by wt) of the at least one hydroxyalkyl cellulose.
The at least one aliphatic alcohol may be, for example, lauryl alcohol, myristyl alcohol or stearyl alcohol. In particularly preferred embodiments of the present oral dosage form, however, the at least one aliphatic alcohol is cetyl alcohol or cetostearyl SUBSTITUTE SHEET

WO 93/1076~ PCT/L.!S92/10146 2098738 '~
alcohol. The amount of the at least one aliphatic alcohol in the present oral dosage form will be determined, as above, by the precise rate of oxycodone release required. It will also depend on whether at least one polyalkylene glycol is present in or absent from the oral dosage form. In the absence of at least one polyalkylene glycol, the oral dosage form preferably contains between 20% and 50% (by wt) of the at least one aliphatic alcohol. When at least one polyalkylene glycol is present in the oral dosage form, then the combined weight of the at least one aliphatic alcohol and the at least one polyalkylene glycol preferably constitutes between 20% and 50% (by wt) of the total dosage.
In one preferred embodiment, the controlled release composition comprises from about 5 to about 25% acrylic resin and from about 8 to about 40% by weight aliphatic alcohol by weight of the total dosage form. A particu-larly preferred acrylic resin comprises Eudragit~ RS PM, commercially available from Rohm Pharma.
In the present preferred dosage form, the ratio of, e.g., the at least one hydroxyalkyl cellulose or acrylic resin to the at least one aliphatic alcohol/polyalkylene glycol determines, to a considerable extent, the release rate of the oxycodone from the formulation. A ratio of the at least one hydroxyalkyl cellulose to the at least one aliphatic alcohol/polyalkylene glycol of between 1:2 and 1:4 is preferred, with a ratio of between 1:3 and 1:4 being particularly preferred.
The at least one polyalkylene glycol may be, for example, polypropylene glycol or, which is preferred, polyethylene glycol. The number average molecular weight of the at least one polyalkylene glycol is preferred between 1000 and 15000 especially between 1500 and 12000.
Another suitable controlled release matrix would comprise an alkylcellulose (especially ethyl cellulose), SUBSTITUTE SHEET

WO 93/1076 ~ ~ ~ ~ ~ ~ ~ ~ PCT/L'S92/10146 a C~Z to C36 aliphatic alcohol and, optionally, a poly-alkylene glycol.
In addition to the above ingredients, a controlled release matrix may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art.
As an alternative to a controlled release matrix, the present matrix may be a normal release matrix having a coat that controls the release of the drug. In par-ticularly preferred embodiments of this aspect of the invention, the present dosage form comprises film coated spheroids containing active ingredient and a non-water soluble spheronising agent. The term spheroid is known in the pharmaceutical art and means a spherical granule having a diameter of between 0.5 mm and 2.5 mm especially between 0.5 mm and 2 mm.
The spheronising agent may be any pharmaceutically acceptable material that, together with the active in-gredient, can be spheronised to form spheroids. Micro-crystalline cellulose is preferred.
A suitable microcrystalline cellulose is, for example, the material sold as Avicel PH 101 (Trade Mark, FMC Corporation). According to a preferred aspect of the present invention, the film coated spheroids contain between 70% and 99% (by wt), especially between 80% and 95% (by wt), of the spheronising agent, especially microcrystalline cellulose.
In addition to the active ingredient and spheron-ising agent, the spheroids may also contain a binder.
Suitable binders, such as low viscosity, water soluble polymers, will be well known to those skilled in the pharmaceutical art. However, water soluble hydroxy lower alkyl cellulose, such as hydroxy propyl cellulose, are preferred. Additionally (or alternatively) the spheroids SUBSTITUTE SHEET

WO 93/1076 PCT/I!S92/10146 2098738:~~s may contain a water insoluble polymer, especially an acrylic polymer, an acrylic copolymer, such as a methacrylic acid-ethyl acrylate copolymer, or ethyl cellulose.
The spheroids are preferably film coated with a material that permits release of the oxycodone (or salt) at a controlled rate in an aqueous medium. The film coat is chosen so as to achieve, in combination with the other ingredients, the in-vitro release rate outlined above (between 12.5% and 42.5% (by wt) release after 1 hour, etc.).
The film coat will generally include a water insoluble material such as (a) a wax, either alone or in admixture with a fatty alcohol, (b) shellac or zein, (c) a water insoluble cellulose, especially ethyl cellulose, (d) a polymethacrylate, especially Eudragit~.
Preferably, the film coat comprises a mixture of the water insoluble material and a water soluble material.
The ratio of water insoluble to water soluble material is determined by, amongst other factors, the release rate required and the solubility characteristics of the materials selected.
The water soluble material may be, for example, polyvinylpyrrolidone or, which is preferred, a water soluble cellulose, especially hydroxypropylmethyl cellulose.
Suitable combinations of water insoluble and water soluble materials for the film coat include shellac and polyvinylpyrrolidone or, which is preferred, ethyl cellulose and hydroxypropylmethyl cellulose.
In order to facilitate the preparation of a solid, controlled release, oral dosage form according to this SUBSTITUTE SHEET

WO 93/1076 ~ ~ ~ ~ ~ , PCT/US92/10146 invention there is provided, in a further aspect of the present invention, a process for the preparation of a solid, controlled release, oral dosage form according to the present invention comprising incorporating hydro-morphone or a salt thereof in a controlled release matrix. Incorporation in the matrix may be effected, for example, by (a) forming granules comprising at least one water soluble hydroxyalkyl cellulose and oxycodone or a oxycodone salt, (b) mixing the hydroxyalkyl cellulose containing granules with at least one C -C aliphatic alcohol, and (c) optionally, compressing and shaping the granules. Preferably, the granules are formed by wet granulating the hydroxyalkyl cellulose/oxycodone with water. In a particularly preferred embodiment of this process, the amount of water added during the wet granulation step is preferably between 1.5 and 5 times, especially between 1.75 and 3.5 times, the dry weight of the oxycodone.
The present solid, controlled release, oral dosage form may also be prepared, in the form of film coated spheroids, by (a) blending a mixture comprising oxycodone or a oxycodone salt and a non-water soluble spheronising agent, (b) extruding the blended mixture to give an extrudate, (c) spheronising the extrudate until spheroids are formed, and (d) coating the spheroids with a film coat.
The present solid, controlled release, oral dosage form and processes for its preparation will now be described by way of example only.
SUBSTITUTE SHEET

2098738 a DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following examples illustrate various aspects of the present invention. They are not meant to be con strued to limit the claims in any manner whatsoever.

Controlled Release Oxycodone HC1 30 ma Tablets - Aqueous Manufacture The required quantities of oxycodone hydrochloride, 10 spray-dried lactose, and Eudragit~ RS PM are transferred into an appropriate-size mixer, and mixed for approxi-mately 5 minutes. While the powders are mixing, the mixture is granulated with enough water to produce a moist granular mass. The granules are then dried in a 15 fluid bed dryer at 60°C, and then passed through an 8-mesh screen. Thereafter, the granules are redried and pushed through a 12-mesh screen. The required quantity of stearyl alcohol is melted at approximately 60-70°C, and while the granules are mixing, the melted stearyl alcohol is added. The warm granules are returned to the mixer.
The coated granules are removed from the mixer and allowed to cool. The granules are then passed through a 12-mesh screen. The granulate is then lubricated by mixing the required quantity of talc and magnesium stearate in a suitable blender. Tablets are compressed to 375 mg in weight on a suitable tableting machine. The formula for the tablets of Example 1 is set forth in Table 1 below:

Formula of Oxycodone HC1 30-ma Tablets Component mg/Tablet % fbv wt) Oxycodone Hydrochloride 30.o 8 Lactose (spray-dried) 213.75 57 Eudragit~ RS PM 45.0 . 12 SUBSTITUTE SHEET

WO 93/1076 2 0 9 8 7 3_ V .gin PCT/US92/10146 Purified Water q.s* --Stearyl Alcohol 75.0 20 Talc 7.5 2 Magnesium Stearate 3.75 1 Total: 375.0 100 *Used in manufacture and remains in final product as residual quantity only.
The tablets of Example 1 are then tested for dis-solution via the USP Basket Method, 37°C, 100 RPM, first hour 700 ml gastric fluid at pH 1.2, then changed to 900 ml at 7.5. The results are set forth in Table 2 below:

Dissolution of Oxycodone 30 mg Controlled Release Tablets Time % Oxycodone Dissolved 1 33.1 2 43.5 4 58.2 8 73.2 12 81.8 18 85.8 24 89.2 Controlled Oxycodone HCl 10 mg Release Tablets - Organic Manufacture The required quantities of oxycodone hydrochloride and spray dried lactose are transferred into an appro-priate sized mixer and mix for approximately 6 minutes.
Approximately 40 percent of the required Eudragit~ RS PM
powder is dispersed in Ethanol. While the powders are mixing, the powders are granulated with the dispersion and the mixing continued until a moist granular mass is formed. Additional ethanol is added if needed to reach granulation end point. The granulation is transferred to a fluid bed dryer and dried at 30°C; and then passed SUBSTITUTE SHEET

WO 93/10?6~ PCT/US92/10146 2 0 987 ~8.;
through a 12-mesh screen. The remaining Eudragit~ RS PM
is dispersed in a solvent of 90 parts ethanol and 10 parts purified water; and sprayed onto the granules in the fluid bed granulator/dryer at 30°C. Next, the granu-late is passed through a 12-mesh screen. The required quantity of stearyl alcohol is melted at approximately 60-70°C. The warm granules are returned to the mixer.
While mixing, the melted stearyl alcohol is added. The coated granules are removed from the mixer and allowed to cool. Thereafter, they are passed through a 12-mesh screen.
Next, the granulate is lubricated by mixing the required quantities of talc and magnesium stearate in a suitable blender. The granulate is then compressed to 125 mg tablets on a suitable tableting machine.
The formula for the tablets of Example 2 (10 mg con trolled release oxycodone) is set forth in Table 3 below:
Table 3 Formula of Oxycodone HC1 10 ma Controlled Release Tablets Percent Component MgjTablet Sby wt) Oxycodone hydrochloride 10.00 8 Lactose (spray-dried) 71.25 57 Eudragit~ RS PM 15.00 12 Ethanol q.s.* -Purified Water q.s.* --Stearyl Alcohol 25.00 20 Talc 2.50 2 Magnesium stearate 1.25 1 Total: 125.00 mg 100 *Used only in the manufacture and remains in final product as residual quantity only.
The tablets of Example 2 are then tested for dis-solution via USP Basket Method at 37°C, 100 RPM, first SUBSTITUTE SHEET

'098738 : 18 hour 700 ml simulated gastric (pH 1.2) then changed to 900 ml at pH 7.5.
The results are set forth in Table 4 below:
Table 4 Dissolution of Oxycodone 10 mg Controlled Release Tablets Hour $ Dissolved 1 35.9 2 47.7 4 58.5 8 6?.7 12 74.5 18 76.9 24 81.2 EgAMPLEB 3 - 4 Coatrollad Releaso Oxyaodone 10 and 20 me Tablets (Acu~ous Manufacture) Eudragit~ RS 30D and Triacetin~ are combined while passing though a 60 mesh screen, and mixed under low shear for approximately 5 minutes or until a uniform dispersion is observed.
Next, suitable quantities of Oxycodone HC1, lactose, and povidone are placed into a fluid bed granulator/dryer (FBD) bowl, and the suspension sprayed onto the powder in the fluid bed. After spraying, the granulation is passed through a #12 screen if necessary to reduce lumps. The dry granulation is placed in a mixer.
In the meantime, the required amount of stearyl alcohol is melted at a temperature of approximately 70°C.
The melted stearyl alcohol is incorporated into the granulation while mixing. The waxed granulation is transferred to a fluid bed granulator/dryer or trays and allowed to cool to room temperature or below. The cooled granulation is then passed through a #12 screen. There-SUBSTITUTE SHEET

WO 93/1076 PCf/US92/10146 after, the waxed granulation is placed in a mixer/blender and lubricated with the required amounts of talc and magnesium stearate for approximately 3 minutes, and then the granulate is compressed into 125 mg tablets on a suitable tableting machine.
The formula for the tablets of Example 3 is set forth in Table 5 below:
Table 5 Formula of Controlled Release mq Tablets Oxycodone 10 Component Mg~Tablet %(by wt) Oxycodone Hydrochloride 10.0 8.0 Lactose (spray dried) 69.25 55.4 Povidone 5.0 4.0 Eudragit~ RS 30D (solids) 10.0* 8.0 Triacetin~ 2.0 1.6 Stearyl Alcohol 25.0 20.0 Talc 2.5 2.0 Magnesium Stearate 1.25 1.0 Total: 125.0 100.0 *Approximately 33.33 mg Eudragit~ RS 30D Aqueous dispersion is equivalent to 10 mg of Eudragit~
RS 30D dry substance.

The tablets of Example 3 are then testedfor dis-solution via the USP Basket Method at 37C, 00 RPM, first hour 700 ml simulated gastric fluid pH 1.2, then at changed to 900 ml at pH 7.5. The results are set forth in Table 6 below:

Table 6 Dissolution of Oxycodone l0 mg Controlled Release Tablets Hour % Oxycodone Dissolved 1 38.0 2 47.5 4 62.0 8 79.8 SUBSTITUTE SHEET

2098738e 20 12 91.1 18 94.9 24 98.7 The formula for the tablets of Example 4 is set forth in Table 7 below:
Table 7 Formula of Controlled Release Oxycodone 20 mg' Tablets Component Mg,/Tablet Oxycodone Hydrochloride 20.0 Lactose (spray dried) 59.25 Povidone 5.0 Eudragit~ RS 30D (solids) 10.0*
Triacetin~ 2.0 Stearyl Alcohol 25.0 Talc 2.5 Magnesium Stearate 1.25 Total: 125.0 The tablets of Example 4 are then tested for dissolution via the USP Basket Method at 37°C, 100 RPM, first hour 700 ml simulated gastric fluid at pH 1.2, then changed to 900 ml at pH 7.5. The results are set forth in Table 8 below:
Table 8 Dissolution of Oxvcodone 20 ma Controlled Release Tablets Hour % Oxycodone Dissolved SUBSTITUTE SHEET

WO 93/1076 PCT/C.'S92/10146 In Example 5, 30 mg controlled release oxycodone hydrochloride tablets are prepared according to the process set forth in Example 1.
In Example 6, 10 mg controlled release oxycodone hydrochloride tablets are prepared according to the process set forth in Example 2.
Thereafter, dissolution studies of the tablets of Examples 5 and 6 are conducted at different pH levels, namely, pH 1.3, 4.56, 6.88 and 7.5.
The results are provided in Tables 9 and 10 below:
Table - Example 5 Percentage Oxycodone 30 mq Tablets Time Dissolved Over pH 1 2 4 8 12 18 24 1.3 29.5 43.7 61.8 78.9 91.0 97.0 97.1 4.56 34.4 49.1 66.4 82.0 95.6 99.4 101.1 6.88 33.8 47.1 64.4 81.9 92.8 100.5 105.0 7.5 27.0 38.6 53.5 70.0 81.8 89.7 96.6 Table - Example Percentage HC1 - 0 mg Oxycodone l Tablets Over Dissolved Time pH 1 2 4 8 12 18 24 1.3 25.9 41.5 58.5 73.5 85.3 90.7 94.2 4.56 37.8 44.2 59.4 78.6 88.2 91.2 93.7 6.88 34.7 45.2 60.0 75.5 81.4 90.3 93.9 7.5 33.2 40.1 51.5 66.3 75.2 81.7 86.8 In Examples 7-12, 4 mg and 10 mg oxycodone HC1 tablets were prepared according to the formulations and methods set forth in the assignee's U.S. Patent No.
4,990,341.
SUBSTITUTE SHEET

In Example 7, oxycodone hydrochloride (10.00 gm) was wet granulated with lactose monohydrate (417.5 gm) and hydroxyethyl cellulose (100.00 gm), and the granules were sieved through a 12 mesh screen. The granules were then dried in a fluid bed dryer at 50° C and sieved through a 16 mesh screen.
Molten cetostearyl alcohol (300.0 gm) was added to the warmed oxycodone containing granules, and the whole was mixed thoroughly. The mixture was allowed to cool in the air, regranulated and sieved through a 16 mesh screen.
Purified Talc (15.0 gm) and magnesium stearate (7.5 gm) were then added and mixed with the granules. The granules were then compressed into tablets.
Example 8 is prepared in the same manner as Example 7; however, the formulation includes 10 mg oxycodone HC1/tablet. The formulas for Examples 7 and 8 are set forth in Tables 11 and 12, respectively.
Table 11 Formulation of Example 7 Inctredient mg~/tablet ct/batch Oxycodone hydrochloride 4.0 10.0 Lactose monohydrate 167.0 417.5 Hydroxyethylcellulose 40.o 100.0 Cetostearyl alcohol 120.0 300.0 Purified talc 6.0 15.0 Magnesium stearate 3.0 7.5 Table 12 Formulation of Example 8 Ingredient mg~/tablet g/batch Oxycodone hydrochloride 10.0 25.0 Lactose monohydrate 167.0 417.5 Hydroxyethylcellulose 40.0 100.0 SUBSTITUTE SHEET

Cetostearyl alcohol 120.0 300.0 Talc 6.0 15.0 Magnesium stearate 3.0 7.5 In Example 9, 4 mg oxycodone HC1 controlled release tablets are prepared according to the excipient formula cited in Example 2 of U.S. Patent No. 4,990,341. The method of manufacture is the same as set forth in Examp-les 7 and 8 above. Example l0 is prepared according to Example 9, except that 10 mg oxycodone HC1 is included per tablet. The formulas for Examples 9 and 10 are set forth in Tables 13 and 14, respectively.
Table 13 Formulation of Example 9 Ingredient mq/tablet ct/batch Oxycodone hydrochloride 4.0 10.0 Anhydrous Lactose 167.0 417.5 Hydroxyethylcellulose 30.0 75.0 Cetostearyl alcohol 90.0 225.0 Talc 6.0 15.0 Magnesium stearate 3.0 7.5 Table 14 Formulation of Example 14 Ingredient mQ/tablet ct/batch Oxycodone hydrochloride 10.0 25.0 Hydrous lactose 167.0 417.5 Hydroxyethylcellulose 30.0 75.0 Cetostearyl alcohol 90.0 225.0 Talc 6.0 15.0 Magnesium stearate 3.0 7.5 In Example 11, oxycodone 4 mg controlled release tablets are prepared with the same excipient formula cited in Example 3 of U.S. patent No..4,990,341.
SUBSTITUTE SHEET

2098738 ' 24 Oxycodone hydrochloride (32.0 gm) was wet granulated with lactose monohydrate (240.0 gm) hydroxyethyl cellu-lose (80.0 gm) and methacrylic acid copolymer (240.0 gm, Eudragit~ L-100-55), and the granules were sieved through a 12 mesh screen. The granules were then dried in a Fluid Bed Dryer at 50° C and passed through a 16 mesh screen.
The warmed oxycodone containing granules was added molten cetostearyl alcohol (240.0 gm), and the whole was mixed thoroughly. The mixture was allowed to cool in the air, regranulated and sieved through a 16 mesh screen.
The granules were then compressed into tablets.
Example 12 is prepared in identical fashion to Example~ll, except that 10 mg oxycodone HC1 is included per tablet. The formulations for Examples 11 and 12 are set forth in Tables 15 and 16, respectively.
Table 15 Formulation of Example 11 Inqredient mg,/tablet q/batch Oxycodone hydrochloride 4.0 32.0 Lactose monohydrate 30.0 240.5 Hydroxyethylcellulose 10.0 80.0 Methacrylic acid copolymer 30.0 240.0 Cetostearyl alcohol 30.0 240.0 Table 16 Formulation of Example 12 Ingredient mg/tablet a/batch Oxycodone hydrochloride 10.0 80.0 Lactose monohydrate 30.0 240.5 Hydroxyethylcellulose 10.0 80.0 Methacrylic acid copolymer 30.0 240.0 Cetostearyl alcohol 30.0 240.0 SUBSTITUTE SHEET

2~98~ 3g Next, dissolution studies were conducted on the tablets of Examples 7-12 using the USP basket method as described in the U.S. Pharmacopoeia XXII (1990). The speed was 100 rpm, the medium was simulated gastric fluid 5 for the first hour followed by simulated intestinal fluid thereafter, at a temperature of 37° C. Results are given in Table 17.

Time $ Oxycodone Dissolved ~hrs) Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 11 Ex. 12 1 23.3 25.5 28.1 29.3 31.3 40.9 2 35.6 37.5 41.5 43.2 44.9 55.6 15 4 52.9 56.4 61.2 63.6 62.1 74.2 8 75.3 79.2 83.7 88.0 82.0 93.9 12 90.7 94.5 95.2 100.0 91.4 100.0 2o clinical studies In Examples 13-16, randomized crossover bioavail-ability studies were conducted employing the formulation of Examples 2 (organic manufacture) and 3 (aqueous manufacture).
25 In Example 13, a single dose fast/fed study was conducted on 24 subjects with oxycodone tablets prepared according to Example 3.
In Example 14, a steady-state study was conducted on 23 subjects after 12 hours with oxycodone tablets pre-pared according to Example 2, and compared to a 5 mg oxycodone immediate-release solution.
In Example 15, a single dose study was conducted on 22 subjects using oxycodone tablets prepared according to Example 3, and compared to a 20 mg oxycodone immediate release solution.
SUBSTITUTE SHEET

In Example 16, a 12 subject single-dose study was conducted using 3 x 10 mg oxycodone tablets prepared according to Example 3, and compared to a 30 mg oxycodone immediate release solution.
The results of Examples 13-16 are set forth in Table 18.
Table 18 AUC Cmax Tmax Example Dosacre ng/mlLhr n ml hr 13 10 mg CR Fast 63 6.1 3.8 10 mg CR Fed 68 7.1 3.6 14 5 mg IR q6h 121 17 1.2 10 mg CR ql2h 130 17 3.2 20 mg IR 188 40 1.4 15 2 x 10 mg CR 197 18 2.6 16 30 mg IR 306 53 1.2 3 x 10 mg CR 350 35 2.6 30 mg CR 352 36 2.9 IR denotes immediate-rel ease oxycodone solution.

CR denotes controlled-re lease tablets CLINICAL STUDIES
In Example 17, a single dose, double blind, random-ized study determined the relative analgesic efficacy, the acceptability, and relative duration of action of an oral administration of controlled release oxycodone 10, 20 and 30 mg prepared according to the present invention (CR OXY) compared to immediate release oxycodone 15 mg (IR OXY), immediate release oxycodone 10 mg in combina-tion with acetaminophen 650 mg (IR OXY/APAP) and placebo in 180 patients with moderate or severe pain following abdominal or gynecological surgery. Patients rated their pain intensity and pain relief hourly for up to 12 hours postdosing. Treatments were compared using standard SUBSTITUTE SHEET

scales for pain intensity and relief, and onset and duration of pain relief.
A11 active treatments were significantly superior to placebo for many of the hourly measures, and for sum pain intensity differences (SPID) and total pain relief (TOTPAR). A dose response was seen among the 3 dose levels of CR OXY for pain relief and peak pain intensity difference (PID), with CR OXY 20mg and 30 mg being significantly better than the 10 mg dose. IR OXY was significantly superior to CR OXY 10 mg at hr 1 and 2. IR
OXY/APAP was significantly superior to the 3 doses of CR
OXY at hr 1, and to CR OXY 10 mg at hrs 2 through 5.
Onset time was significantly shorter for the IR OXY and IR OXY/APAP treatment groups in comparison to the 3 CR
OXY treatments. The distribution functions for duration of relief revealed significantly longer duration of relief for the three CR OXY doses than for IR OXY and IR
OXY/APAP. No serious adverse experiences were reported.
The results are more particularly reported in Table 19 below.

PATIENT DISPOSITION
TREATMENT GROUP
IR OXY -----CR OXY------l5mq PLACEBO l Omq 2 Omcr 3 Omq 2 PERC~ TOTAL
Enrolled and Randomized to Study Treatment 31 31 30 30 30 30 182 Entered the Study Treat-ment Phase 31 31 30 30 30 30 182 Completed the Study 31 30 30 30 30 30 181 SUBSTITUTE SHEET

WO 93/1076 PCT/l.'S92/10146 ~098~'38 ~;~ 28 Discontinued from the Study 0 1 0 0 0 0 1 Excluded from Efficacy Analysis -Vomited prior to 1 hr post dose 0 -1. _. 0 0 0 0 1 -Inadvertently received rescue during study 1 0 0 0 0 0 1 Analysis Population:
-Evaluable for Safety and Efficacy 30 30 30 30 30 30 180 -Evaluable for Safety 31 31 30 30 30 30 182 * 2 tablets of Percocet~
The time-effect curves for pain intensity, pain intensity differences and pain relief are shown in Figures 1-4. CR OXY l0 mg had significantly (p < .05) lower pain intensity scores than the placebo-treated patients at hours 3-11 and lower pain scores than IR OXY
15 mg and Percocet~ at hour 10. CR OXY 20 mg has sig-nificantly (p < .05) lower pain intensity scores compared to placebo at hours 2 - 11 and significantly (p < .05) lower pain scores than CR OXY 10 mg, IR OXY 15 mg and Percocet at hours 9-11. CR OXY 30 mg had significantly (p < .05) lower pain scores than placebo at hours 2-11 and lower pain scores than CR OXY 10 mg at hours 2, 3, and 5 and lower scores than Percocet~ at hour 10.
For hourly pain relief scores categorical and visual analog scales (CAT and VAS), CR OXY 10 mg had signifi-cantly (p < .05) higher pain relief scores than placebo at hours 3-11 and higher relief scores than IR OXY and Percocet~ at hour 10 (and Percocet~ at hour 11). CR OXY
SUBSTITUTE SHEET

WO 93/l076~ PCT/US92/10146 r_ 20987 38 20 mg had significantly (p < .05) higher relief scores than placebo at hours 2-12 and higher relief scores than Percocet~ at hours 9-12. In addition, CR OXY had sig-nificantly (p < .05) higher pain relief than IR OXY at hours 10-12. CR OXY 30 mg had significantly (p < .05) higher pain relief scores than placebo at hours 2-12 and higher scores than Percocet~ at hours 9-12 and IR OXY 15 mg at hour 10.
Each treatment group was significantly (p < .05) better than placebo with respect to the sum of the pain intensity differences (SPID) and total pain relief (TOTPAR).
Duration of pain relief as measured by the patient stopwatch method showed that CR OXY 10 mg, 20 mg and 30 mg had significantly (p < .05) longer duration of action compared to IR OXY 15 mg and 2 tablets Percocet~. In addition, the three controlled-release formulations had significantly (p < .05) longer times to remedication compared to Percocet~.
Before remedication, a total of 104 (57%) of patients reported 120 adverse experiences. The most common were somnolence, fever, dizziness and headache.
Based upon the results of this study it is concluded that the controlled release oxycodone formulations of the present invention relieve moderate to severe post operative pain, e.g., due to abdominal or gynecological surgery in women. There is a dose response noted in which placebo < l0 mg < 20 mg < 30 mg CR OXY following a single dose. Onset of action occurred in one hour with peak effects noted from 2 to 5 hours and a duration of effect from 10 to 12 hours. In the chronic pain situa-tion steady state dosing may prolong this effect. Side effects are expected and easily managed. Headache may be related to dose. Dizziness and somnolence were reported.
SUBSTITUTE SHEET

WO 93/1076 PCf/US92/10146 IR OXY 15 mg has an intermediate peak effect compared to controlled release oxycodone. Its duration of action is shorter (6-8 hours). Percocet~ is quite effective in terms of onset, peak effect and safety. The duration of action is 6-8 hours.
In summary, CR OXY was clearly an effective oral analgesic, with a slower onset but a longer duration of effect than either IR OXY or IR OXY/APAP.

CLINICAL BTUDIEB
In Example 18, a steady state crossover trial was conducted in 21 normal male subjects comparing a. CR OXY 10 mg administered every 12 hours (ql2h); and b. Roxicodone~ oral solution 5 mg (ROX) administered every 6 hours (q6h), Treatment (b) was the study reference standard. The average age was 34 years, height 176 cm and weight 75 kg.
No unusual features were noted about the group.
Figure 5 shows the mean plasma oxycodone concen-trations for the two formulations over the 12 hour dosing interval. The results are summarized in Table 18 in terms of mean values, ratios of mean values and 90%
confidence intervals.
As inspection of Table 18 reveals, with one excep-tion, no significant differences were detected between the two formulations. The single exception is the mean tax for CR OXY of 3.18 hours which, as expected for a controlled release formulation, significantly exceeded the ROX mean of 1.38 hours. Mean AUC-based bioavail-ability, (ROX = 100%) was 104.4% with 90% confidence limits of 90.9 to 117.9%. Thus, the FDA specification of +20% is met so that the study results support an assertion of equal oxycodone availability.
SUBSTITUTE SHEET

.~ 2098738 SUNIHIARY OF PHARMACOKINETIC PARAMETERS FOR OXYCODONE
FOLLOWING A SINGLE DOSE OF CR OXY (lOmg ql2H) AND ROXICODONE~ ORAL SOLUTION (5mct a6h) OXY/
ROXICODONE ROXI
PARAMETER CR OXY SOLUTION (%) 90% CI~
l0 C
(ng/mL) ~x 97.08 85.59-ARITH.MEAN(SD) 15.11(4.69) 15.57(4.4l) 108.50 GEOMETRIC MEAN 14.43 15.01 95.14 Cm~~ (ng/mL) ARITH.MEAN(SD) 6.24(2.64) 6.47(3.07) 96.41 80.15-112.74 GEOMETRIC MEAN 5.62 5.83 96.48 tax ( hrS ) ARITH.MEAN 160.71-(SD) 3.18(2.21J 1.38(0.71)* 230.17 298.71 AUC(0-12 hrs) ARITH. 90.92-MEAN(SD) 103.50(40.03) 99.10(35.04) 104.44 117.94 GEOMETRIC

MEAN 97.06 93.97 103.29 %Swing ARITH.MEAN 62.06-(SD) 176.36(139.0) 179.0(124.25) 98.53 134.92 %Fluctuation ARITH. 76.81-MEAN(SD~ 108.69(38.77) 117.75 (52.47) 92.22 107.57 End Point ARITH. 117.77-MEANISD) -1.86(2.78) -1.8612.19) 99.97 22.23 90% Confidence Interval --Significant Difference p < o.05 CLINICAL BTUDIEB
In Example 19, twenty-four normal, healthy male sub-jects were enrolled in a randomized single-dose two-way crossover study to compare the plasma oxycodone concen-trations obtained after dosing with two controlled-release oxycodone 10 mg tablets versus 20 mg (20 ml of 5 mg/5 ml) of immediate release (IR) oxycodone hydro-chloride solution. Twenty-three subjects completed the study and were eligible for analysis.
SUBSTITUTE SHEET

WO 93/1076~ PCT/L1S92/10146 Plasma oxycodone concentrations were determined by a high performance liquid chromatographic procedure. Arith-metic Mean C~x, tax, AUC, and half-lives calculated from individual plasma oxycodone concentration-versus-time data are set forth in Table 21:

Reference Test Pharmaco- Product Product 90%
kinetic IR Oxycodone CR Oxycodone Confidence l0 Parameter 20 mg 2 x 10 mg F, (%) Interval Cmex (ng/ml) 41.60 l8.62 44.75 32.5-57.0 (hours) 1.30 2.62 200.83 169.8-232.6 AUC

(0-36) 194.35 199.62 102.71 89.5-115.9 (mg x hr/ml) AUC (0-~) 194.38 208.93 107.49 92.9-121.9 (ng x hr/ml) ~
e m) t s .98* 249.15 219.0-( h~
~
3.21 7 278.8 (~~hr )) 0.35 0.92* 264.17 216.0-310.7 F, % - oral bioavailability (CR oxycodone 2 x 10 mg/IR oxycodone 20 mg) *Statistically significant (p = 0.0001) FOr C~x, tax, t,h ~e~~m) dnd t,~ Webs) there were statistically significant differences between the CR OXY
and IR OXY. There were no statistically significant differences between the two treatments in the extent of absorption [AUC (0,36), AUC (0,~). The 90% confidence SUBSTITUTE SHEET

2098~3~

interval for CR OXY relative to IR OXY relative was 89.5%
- 115.9% for AUC (0,36) and 92.9% - 121.9% for AUC (O,ao).
Based on the 90% confidence interval analysis, the controlled-release oxycodone tablets were equivalent in extent of absorption (AUC 0,36) to the immediate-release oxycodone solution. The controlled-release oxycodone absorption was slower by approximately 1.3 hours. No statistically significant differences were noted between the two treatments with reference to adverse experiences, none of which were considered clinically unusual for opiates for this type of study.
The above studies demonstrate a significant dose-response relationship utilizing the controlled release oxycodone formulations of the present invention at dosages of 10, 20 and 30 mg which does not deviate from parallelism with dose-response slopes for MS Contin in similarly designed well-controlled analgesic efficacy studies of MS Contin reported by Kaiko R.S., Van Wagoner D., Brown J., et al., "Controlled-Release Oral Morphine (MS Contina Tablets, MSC) in Postoperative Pain.", Pain Suppl., 5:S149 1990, who compared 30, 60, 90, and 120 mg of MS Contin as compared with~l0 mg of intramuscular morphine and placebo and Bloomfield, et al., "Analgesic Efficacy and Potency of Two Oral Controlled-Release Mor-phine Preparations", Clinical Pharmacology & Therapeutics, Vol. 53, No. 4, l993, who compared 30 and 90 mg of MS Contin as compared to 30 and 90 mg of another controlled-release oral morphine preparation, Oramorph SR 30 mg tablets.
The examples provided above are not meant to be 'exclusive. Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.

Claims (28)

WHAT IS CLAIMED IS:
1. The use of an oral controlled release dosage formulation comprising from about 10 to about 40 mg oxycodone or a salt thereof which provides a mean maximum plasma concentration of oxycodone from about 6 to about 60 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to about 30 ng/ml from a mean of about 10 to about 14 hours after repeated administration every 12 hours through steady-state conditions, for substantially reducing the range in daily dosages required to control pain in human patients.
2. The use of an oral solid controlled release dosage formulation comprising from about 10 mg to about 160 mg oxycodone or a salt thereof which provides a mean maximum plasma concentration of oxycodone up to about 240 ng/ml from a mean of up to about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration up to about 120 ng/ml from a mean of about 10 to about 14 hours after repeated administration every 12 hours through steady-state conditions, for substantially reducing the range in daily dosages required to control pain in substantially all human patients.
3. A controlled release oxycodone formulation for oral administration to human patients, comprising from about 10 to about 40 mg oxycodone or a salt thereof in a matrix, said formulation providing a mean maximum plasma concentration of oxycodone from about 6 to about 60 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to about 30 ng/ml from a mean of about 10 to about 14 hours after repeated administration every 12 hours through steady-state conditions.
4. A controlled release oxycodone formulation for oral administration to human patients, comprising from about 10 mg to about 160 mg oxycodone or a salt thereof in a matrix, said formulation providing a mean maximum plasma concentration of oxycodone from about 6 to about 240 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to about 120 ng/ml from a mean of about 10 to about 14 hours after repeated administration every 12 hours through steady-state conditions.
5. A solid controlled release oral dosage form, comprising oxycodone or a salt thereof in an amount from about 10 to about 160 mg said oxycodone or salt thereof being dispensed in a matrix which includes;
an effective amount of a controlled release matrix selected from the group consisting of hydrophilic polymers, hydrophobic polymers, digestible substituted or unsubstituted hydrocarbons having from about 8 to about 50 carbon atoms, polyalkylene glycols, and mixtures of any of the foregoing; and a suitable amount of a suitable pharmaceutical diluent, wherein said composition provides a mean maximum plasma concentration of oxycodone from about 6 to about 240 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to about 120 ng/ml from a mean of about 10 to about 14 hours after repeated administration every 12 hours through steady-state conditions.
6. The controlled release composition of claim 5, wherein said controlled release matrix comprises an acrylic resin.
7. A solid controlled release oral dosage form, comprising (a) an analgesically effective amount of spheroids comprising oxycodone or a salt thereof and either a spheronising agent or an acrylic polymer or copolymer, such that the total dosage of oxycodone in said dosage form is from about 10 to about 160 mg;
(b) a film coating which controls the release of the oxycodone or oxycodone salt at a controlled rate in an aqueous medium, wherein said composition provides an in vitro dissolution rate of the dosage form;
said composition providing a mean maximum plasma concentration of oxycodone from about 6 to about 240 ng/ml from a mean of about 2 to about 4.5 hours after administration, and a mean minimum plasma concentration from about 3 to about 30 ng/ml from a mean of about 10 to about 14 hours after repeated administration every 12 hours through steady-state conditions.
8. The controlled release composition of claim 7, wherein said film coating comprises a water insoluble material selected from the group consisting of shellac or zein, a water insoluble cellulose, or a polymethacrylate.
9. A controlled release tablet for oral administration comprising from about 10 to about 160 mg oxycodone or an oxycodone salt dispersed in a controlled release matrix, said tablet providing an in-vitro dissolution of the dosage form, when measured by the USP
Paddle Method at 100 rpm at 900 ml aqueous buffer (pH
between 1.6 and 7.2) at 37° C, between 12.5% and 42.5%

(by wt) oxycodone released after 1 hour, between 25% and 55% (by wt) oxycodone released after 2 hours, between 45%
and 75% (by wt) oxycodone released after 4 hours and between 55% and 85% (by wt) oxycodone released after 6 hours, the in vitro release rate being substantially independent of pH and chosen such that a mean maximum plasma concentration of oxycodone from about 6 to about 240 ng/ml is obtained in vivo from a mean of about 2 to about 4.5 hours after administration of the dosage form, and a mean minimum plasma concentration from about 3 to about 30 ng/ml from a mean of about 10 to about 14 hours after repeated administration every 12 hours through steady-state conditions.
10. A dosage form according to claim 9, wherein the in vitro dissolution rate is between 17.5% and 38% (by wt) oxycodone released after 1 hour, between 30% and 50%
(by wt) oxycodone released after 2 hours, between 50% and 70% (by wt) oxycodone released after 4 hours and between 60% and 80% (by wt) oxycodone released after 6 hours.
11. A dosage form according to claim 9, wherein the in vitro dissolution rate is between 17.5% and 32.5% (by wt) oxycodone released after 1 hour, between 35% and 45%
(by wt) oxycodone released after 2 hours, between 55% and 65% (by wt) oxycodone released after 4 hours and between 65% and 75% (by wt) oxycodone released after 6 hours.
12. A solid, controlled release, oral dosage form, the dosage form comprising an analgesically effective amount of oxycodone or a salt thereof in a matrix wherein the dissolution rate in vitro of the dosage form, when measured by the USP Paddle Method at 100 rpm at 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37° C. is between 12.5% and 42.5% (by wt) oxycodone released after 1 hour, between 25% and 55% (by wt) oxycodone released after 2 hours, between 45% and 75% (by wt) oxycodone released after 4 hours and between 55% and 85% (by wt) oxycodone released after 6 hours, the in vitro release rate being independent of pH between pH 1.6 and 7.2 and chosen such that the peak plasma level of oxycodone obtained in vivo occurs between 2 and 4 hours after administration of the dosage form.
13. A dosage form according to claim 12 wherein the in vitro dissolution rate is between 17.5% and 38% (by wt) oxycodone released after 1 hour, between 30% and 50% (by wt) oxycodone released after 2 hours, between 50% and 70% (by wt) oxycodone released after 4 hours and between 60% and 80% (by wt) oxycodone released after 6 hours.
14. A dosage form according to claim 13 wherein the in vitro dissolution rate is between 17.5% and 32.5% (by wt) oxycodone released after 1 hour, between 35% and 45% (by wt) oxycodone released after 2 hours, between 55% and 65% (by wt) oxycodone released after 4 hours and between 65% and 75% (by wt) oxycodone released after 6 hours.
15. A dosage form according to claim 12 wherein the peak plasma level of oxycodone occurs between 2.25 and 3.75 hours after administration of the dosage form.
16. A dosage form according to claim 12 wherein a therapeutically effective amount of an oxycodone salt comprises between 2 and 50 mg of oxycodone hydrochloride.
17. A dosage form according to claim 12 wherein a therapeutically effective amount of an oxycodone salt comprises between 2 and 40 mg of oxycodone hydrochloride.
18. A solid controlled release oral dosage form, comprising an analgesically (a) effective amount of oxycodone or a salt thereof;
(b) an effective amount of a controlled release matrix selected from the group consisting of hydrophilic polymers, hydrophobic polymers, digestible substituted or unsubstituted hydrocarbons having from about 8 to about 50 carbon atoms, and polyalkylene glycols; and (c) a suitable amount of a suitable pharmaceutical diluent, wherein said composition provides an in vitro dissolution rate of the dosage form when measured by the USP Paddle Method at 100 rpm at 900 ml aqueous buffer (pH
between 1.6 and 7.2) at 37° C. is between 12.5% and 42.5%
(by wt) oxycodone released after 1 hour, between 25% and 55% (by wt) oxycodone released after 2 hours, between 45%
and 75% (by wt) oxycodone released after 4 hours and between 55% and 85% (by wt) oxycodone released after 6 hours, the in vitro release rate being independent of pH
between pH 1.6 and 7.2 and chosen such that the peak plasma level of oxycodone obtained in vivo occurs between 2 and 4 hours after administration of the dosage form.
19. The controlled release composition of claim 18, wherein said controlled release matrix comprises an acrylic resin.
20. The controlled release composition of claim 19 which contains from about 2 to about 50 mg of oxycodone hydrochloride.
21. A solid controlled release oral dosage form, comprising (a) an analgesically effective amount of spheroids comprising oxycodone or a salt thereof and either a spheronising agent or an acrylic polymer or copolymer;
(b) a film coating which controls the release of the oxycodone or oxycodone salt at a controlled rate in an aqueous medium, wherein said composition provides an in vitro dissolution rate of the dosage form; and (c) a suitable amount of a suitable pharmaceutical diluent, wherein said composition provides an in vitro dissolution rate of the dosage form when measured by the USP Paddle Method at 100 rpm at 900 ml aqueous buffer (pH
between 1.6 and 7.2) at 37° C. between 12.5% and 42.5% (by wt) oxycodone released after 1 hour, between 25% and 55%
(by wt) oxycodone released after 2 hours, between 45% and 75% (by wt) oxycodone released after 4 hours and between 55% and 85% (by wt) oxycodone released after 6 hours, the in vitro release rate being independent of pH between pH
1.6 and 7.2 and chosen such that the peak plasma level of oxycodone obtained in vivo occurs between 2 and 4 hours after administration of the dosage form.
22. The controlled release composition of claim 21, wherein said film coating comprises a water insoluble material selected from the group consisting of shellac or zero, a water insoluble cellulose, or a polymethacrylate.
23. The controlled release composition of claim 22, which contains from about 2 to about 50 mg of oxycodone hydrochloride.
24. A controlled release tablet for oral administration comprising an analgesically effective amount of oxycodone or an oxycodone salt dispersed in a controlled release matrix, comprising from about 5% to about 25% of an acrylic resin and from about 8% to about 40% of at least one aliphatic alcohol of 12-36 carbon atoms, by weight, wherein the dissolution rate in vitro of the dosage form, when measured by the USP Paddle Method at 100 rpm at 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37° C. is between 12.5% and 42.5% (by wt) oxycodone released after 1 hour, between 25% and 55% (by wt) oxycodone released after 2 hours, between 45% and 75% (by wt) oxycodone released after 4 hours and between 55% and 85% (by wt) oxycodone released after 6 hours, the in vitro release rate being independent of pH between pH 1.6 and 7.2 and chosen such that the peak plasma level of oxycodone obtained in vivo occurs between 2 and 4 hours after administration of the dosage form.
25. A process for the preparation of a solid, controlled release, oral dosage form comprising incorporating an analgesically effective amount of oxycodone or a salt thereof in a controlled release matrix comprising from about 5% to about 25% of an acrylic resin and from about 8% to about 40% of at least one aliphatic alcohol of 12-36 carbon atoms, by weight, wherein the dissolution rate in vitro of the dosage form, when measured by the USP Paddle Method of 100 rpm in 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37° C. is between 25% and 60% (by weight) oxycodone released after 1 hour, between 45% and 80% (by weight) oxycodone released after 2 hours, between 60% and 90% (by weight) oxycodone released after 3 hours, and between 70% and 100% (by weight) oxycodone released after 4 hours, the in vitro release rate being independent of pH between 1.6 and 7.2 and chosen such that the peak plasma level of oxycodone obtained in vivo occurs between 2 and 4 hours after administration of the dosage form.
26. The process of claim 25, further comprising wet granulating said oxycodone or a salt thereof with said acrylic resin in alcohol to form a granulate thereof; adding said at least one aliphatic alcohol in a substantially liquid state to said granulate to obtain coated granules; and compressing and shaping the granules.
27. The process of claim 25, further comprising wet granulating said oxycodone or a salt thereof with said acrylic resin in water to form a granulate thereof; adding said at least one aliphatic alcohol in a substantially liquid state to said granulate to obtain coated granules; and compressing and shaping the granules.
28. The process of claim 27, wherein a portion of said acrylic resin is dispersed in a suitable solvent and sprayed onto said granulate prior to adding said at least one aliphatic alcohol.
CA002098738A 1991-11-27 1992-11-25 Controlled release oxycodone compositions Expired - Lifetime CA2098738C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/800,549 US5266331A (en) 1991-11-27 1991-11-27 Controlled release oxycodone compositions
US800,549 1991-11-27
PCT/US1992/010146 WO1993010765A1 (en) 1991-11-27 1992-11-25 Controlled release oxycodone compositions

Publications (2)

Publication Number Publication Date
CA2098738A1 CA2098738A1 (en) 1993-05-28
CA2098738C true CA2098738C (en) 1999-08-17

Family

ID=25178688

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002098738A Expired - Lifetime CA2098738C (en) 1991-11-27 1992-11-25 Controlled release oxycodone compositions

Country Status (31)

Country Link
US (13) US5266331A (en)
EP (15) EP2243484A3 (en)
JP (2) JP3375960B2 (en)
KR (1) KR100280973B1 (en)
CN (2) CN1165307C (en)
AT (9) ATE261726T1 (en)
AU (1) AU657027B2 (en)
BG (1) BG61753B1 (en)
BR (1) BR9205498A (en)
CA (1) CA2098738C (en)
CZ (4) CZ300183B6 (en)
DE (10) DE69233326T2 (en)
DK (10) DK1810679T3 (en)
ES (9) ES2268189T3 (en)
FI (5) FI113152B (en)
GR (1) GR3022273T3 (en)
HK (6) HK1058474A1 (en)
HU (10) HU227516B1 (en)
IL (1) IL103909A (en)
MX (1) MX9302968A (en)
NO (6) NO307028B3 (en)
PH (1) PH31679A (en)
PL (2) PL172236B1 (en)
PT (8) PT722730E (en)
RO (1) RO115112B1 (en)
RS (3) RS50055B (en)
RU (1) RU2122411C1 (en)
SK (1) SK280295B6 (en)
WO (1) WO1993010765A1 (en)
YU (1) YU49495B (en)
ZA (1) ZA929227B (en)

Families Citing this family (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656295A (en) * 1991-11-27 1997-08-12 Euro-Celtique, S.A. Controlled release oxycodone compositions
US5266331A (en) 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5681585A (en) * 1991-12-24 1997-10-28 Euro-Celtique, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US5580578A (en) * 1992-01-27 1996-12-03 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5968551A (en) 1991-12-24 1999-10-19 Purdue Pharma L.P. Orally administrable opioid formulations having extended duration of effect
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US5958459A (en) * 1991-12-24 1999-09-28 Purdue Pharma L.P. Opioid formulations having extended controlled released
US20080075781A1 (en) * 1992-11-25 2008-03-27 Purdue Pharma Lp Controlled release oxycodone compositions
IL119660A (en) * 1993-05-10 2002-09-12 Euro Celtique Sa Controlled release formulation comprising tramadol
US20070275062A1 (en) * 1993-06-18 2007-11-29 Benjamin Oshlack Controlled release oxycodone compositions
US7740881B1 (en) 1993-07-01 2010-06-22 Purdue Pharma Lp Method of treating humans with opioid formulations having extended controlled release
IL110014A (en) * 1993-07-01 1999-11-30 Euro Celtique Sa Solid controlled-release oral dosage forms of opioid analgesics
US5879705A (en) * 1993-07-27 1999-03-09 Euro-Celtique S.A. Sustained release compositions of morphine and a method of preparing pharmaceutical compositions
EP1442745A1 (en) * 1993-10-07 2004-08-04 Euro-Celtique Orally administrable opioid formulations having extended duration of effect
US6210714B1 (en) * 1993-11-23 2001-04-03 Euro-Celtique S.A. Immediate release tablet cores of acetaminophen having sustained-release coating
KR100354702B1 (en) * 1993-11-23 2002-12-28 유로-셀티크 소시에떼 아노뉨 Manufacturing method and sustained release composition of pharmaceutical composition
US5891471A (en) * 1993-11-23 1999-04-06 Euro-Celtique, S.A. Pharmaceutical multiparticulates
US5843480A (en) * 1994-03-14 1998-12-01 Euro-Celtique, S.A. Controlled release diamorphine formulation
GB9422154D0 (en) 1994-11-03 1994-12-21 Euro Celtique Sa Pharmaceutical compositions and method of producing the same
US20020006438A1 (en) * 1998-09-25 2002-01-17 Benjamin Oshlack Sustained release hydromorphone formulations exhibiting bimodal characteristics
US5965161A (en) * 1994-11-04 1999-10-12 Euro-Celtique, S.A. Extruded multi-particulates
US5558879A (en) * 1995-04-28 1996-09-24 Andrx Pharmaceuticals, Inc. Controlled release formulation for water soluble drugs in which a passageway is formed in situ
GB9519363D0 (en) 1995-09-22 1995-11-22 Euro Celtique Sa Pharmaceutical formulation
US5811126A (en) * 1995-10-02 1998-09-22 Euro-Celtique, S.A. Controlled release matrix for pharmaceuticals
US6159501A (en) * 1996-03-08 2000-12-12 Nycomed Danmark A/S Modified release multiple-units dosage composition for release of opioid compounds
WO1997045091A2 (en) * 1996-05-31 1997-12-04 Euro-Celtique, S.A. Sustained release oxycodone formulations with no fed/fast effect
JPH1050306A (en) * 1996-07-31 1998-02-20 Toyota Autom Loom Works Ltd Manufacture of hydrogen storage alloy electrode
DE19710008A1 (en) * 1997-03-12 1998-09-17 Basf Ag Solid, at least two-phase formulations of a sustained-release opioid analgesic
RS49982B (en) * 1997-09-17 2008-09-29 Euro-Celtique S.A., Synergistic analgesic combination of opioid analgesic and cyclooxygenase-2 inhibitor
CN1204890C (en) * 1997-12-22 2005-06-08 欧罗赛铁克股份有限公司 Method for preventing abuse of opioid dosage forms
RU2241458C2 (en) 1997-12-22 2004-12-10 Эро-Селтик, С.А. Combinations of agonist/antagonist for opioid
US6375957B1 (en) 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
EP0955048A1 (en) * 1998-03-12 1999-11-10 Akzo Nobel N.V. Making dosage units using low shear granulation
IL128818A0 (en) * 1998-03-12 2000-01-31 Akzo Nobel Nv Making dosage units using low shear granulation
US6806294B2 (en) 1998-10-15 2004-10-19 Euro-Celtique S.A. Opioid analgesic
US8545880B2 (en) * 1999-02-26 2013-10-01 Andrx Pharmaceuticals, Llc Controlled release oral dosage form
DE19918325A1 (en) 1999-04-22 2000-10-26 Euro Celtique Sa Extruded drug dosage form, e.g. granulate for tableting, comprising an active agent in a polysaccharide-containing matrix, giving a release profile which is controllable by extrusion conditions and/or the inclusion of additives
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
EP2295043A1 (en) 1999-10-29 2011-03-16 Euro-Celtique S.A. Controlled release hydrocodone formulations
SK287684B6 (en) * 1999-12-20 2011-06-06 Schering Corporation Sustained release solid oral pharmaceutical dosage composition
AU2276801A (en) 1999-12-20 2001-07-03 Schering Corporation Extended release oral dosage composition
JP2003522144A (en) 2000-02-08 2003-07-22 ユーロ−セルティーク,エス.エイ. Controlled release compositions comprising opioid agonists and antagonists
CN101317825A (en) 2000-10-30 2008-12-10 欧罗赛铁克股份有限公司 Controlled release hydrocodone formulations
US20110104214A1 (en) 2004-04-15 2011-05-05 Purdue Pharma L.P. Once-a-day oxycodone formulations
UA81224C2 (en) * 2001-05-02 2007-12-25 Euro Celtic S A Dosage form of oxycodone and use thereof
CN1525851A (en) 2001-05-11 2004-09-01 ������ҩ�����޹�˾ Abuse-resistant controlled-release opioid dosage form
JP2004534056A (en) * 2001-06-08 2004-11-11 エンドー ファーマシューティカルズ, インコーポレイティド Controlled release dosage forms using acrylic polymers and processes for making the same
EP1404331B1 (en) * 2001-07-06 2007-10-31 Penwest Pharmaceuticals Co. Sustained release formulations of oxymorphone
EP2311460A1 (en) * 2001-07-06 2011-04-20 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
US8329216B2 (en) 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
SI1416842T1 (en) 2001-07-18 2009-06-30 Euro Celtique Sa Pharmaceutical combinations of oxycodone and naloxone
US20030068375A1 (en) 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
WO2003015531A2 (en) * 2001-08-06 2003-02-27 Thomas Gruber Pharmaceutical formulation containing dye
US20030157168A1 (en) 2001-08-06 2003-08-21 Christopher Breder Sequestered antagonist formulations
ES2326794T3 (en) 2001-08-06 2009-10-20 Euro-Celtique S.A. FORMULATIONS OF OPIOID AGONISTS WITH LIBERABLE AND SEQUESTED ANTAGONISTS.
US20030044458A1 (en) 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US20040234602A1 (en) 2001-09-21 2004-11-25 Gina Fischer Polymer release system
US20040253310A1 (en) 2001-09-21 2004-12-16 Gina Fischer Morphine polymer release system
CA2459976A1 (en) * 2001-09-26 2003-04-03 Penwest Pharmaceuticals Company Opioid formulations having reduced potential for abuse
PE20030527A1 (en) * 2001-10-24 2003-07-26 Gruenenthal Chemie DELAYED-RELEASE PHARMACEUTICAL FORMULATION CONTAINING 3- (3-DIMETHYLAMINO-1-ETHYL-2-METHYL-PROPYL) PHENOL OR A PHARMACEUTICALLY ACCEPTABLE SALT OF THE SAME AND ORAL TABLETS CONTAINING IT
CN1301104C (en) * 2002-02-21 2007-02-21 大塚制药株式会社 Sustained release preparations and process for producing the same
US7666876B2 (en) * 2002-03-19 2010-02-23 Vernalis (R&D) Limited Buprenorphine formulations for intranasal delivery
ES2546010T3 (en) 2002-04-05 2015-09-17 Euro-Celtique S.A. Pharmaceutical preparation containing oxycodone and naloxone
US20050106249A1 (en) * 2002-04-29 2005-05-19 Stephen Hwang Once-a-day, oral, controlled-release, oxycodone dosage forms
DE60325715D1 (en) * 2002-04-29 2009-02-26 Alza Corp METHODS AND PHARMACEUTICAL FOR THE CONTROLLED RELEASE OF OXYCODONE
RU2004134728A (en) * 2002-05-31 2005-06-10 Алза Корпорейшн (Us) DOSED FORMS AND COMPOSITIONS FOR THE OSMOTIC DELIVERY OF VARIOUS DOSAGE OXYCODONE
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
US20040001889A1 (en) 2002-06-25 2004-01-01 Guohua Chen Short duration depot formulations
US10004729B2 (en) 2002-07-05 2018-06-26 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US8840928B2 (en) 2002-07-05 2014-09-23 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
WO2004004693A1 (en) 2002-07-05 2004-01-15 Collgegium Pharmaceutical Abuse-deterrent pharmaceutical compositions of opiods and other drugs
US8557291B2 (en) 2002-07-05 2013-10-15 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opioids and other drugs
US20040058946A1 (en) * 2002-07-05 2004-03-25 Buchwald Stephen L. Abuse-resistant prodrugs of oxycodone and other pharmaceuticals
US7168140B2 (en) * 2002-08-08 2007-01-30 Milliken & Company Flame resistant fabrics with improved aesthetics and comfort, and method of making same
CA2495182A1 (en) * 2002-08-15 2004-02-26 Noramco, Inc. Oxycodone-hydrochloride polymorphs
PT1551372T (en) 2002-09-20 2018-07-23 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and metohds
US20050020613A1 (en) * 2002-09-20 2005-01-27 Alpharma, Inc. Sustained release opioid formulations and method of use
US20040110781A1 (en) * 2002-12-05 2004-06-10 Harmon Troy M. Pharmaceutical compositions containing indistinguishable drug components
US9107804B2 (en) 2002-12-10 2015-08-18 Nortec Development Associates, Inc. Method of preparing biologically active formulations
CA2507522C (en) * 2002-12-13 2015-02-24 Durect Corporation Oral drug delivery system
GB0300531D0 (en) 2003-01-10 2003-02-12 West Pharm Serv Drug Res Ltd Pharmaceutical compositions
ATE454169T1 (en) * 2003-03-13 2010-01-15 Controlled Chemicals Inc OXYCODONE CONJUGATES WITH LOWER ABUSE POTENTIAL AND EXTENDED DURATION
EP1782834A3 (en) * 2003-03-13 2007-08-01 Controlled Chemicals, Inc. Oxycodone conjugates with lower abuse potential and extended duration of action
ES2360102T3 (en) 2003-03-26 2011-05-31 Egalet A/S SYSTEM FOR CONTROLLED RELEASE OF MORPHINE.
US20040202717A1 (en) 2003-04-08 2004-10-14 Mehta Atul M. Abuse-resistant oral dosage forms and method of use thereof
MY135852A (en) 2003-04-21 2008-07-31 Euro Celtique Sa Pharmaceutical products
US9579286B2 (en) * 2003-04-21 2017-02-28 Purdue Pharma L.P. Tamper resistant dosage form comprising co-extruded, sequestered adverse agent particles and process of making same
US8158149B2 (en) * 2004-05-12 2012-04-17 Chelsea Therapeutics, Inc. Threo-DOPS controlled release formulation
WO2004100929A1 (en) 2003-05-12 2004-11-25 Synergia Pharma, Inc. Threo-dops controlled release formulation
US20060165790A1 (en) * 2003-06-27 2006-07-27 Malcolm Walden Multiparticulates
TWI357815B (en) * 2003-06-27 2012-02-11 Euro Celtique Sa Multiparticulates
CN1826100B (en) * 2003-07-17 2010-12-22 旗帜药物胶囊公司 Controlled release preparation
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE102004020220A1 (en) * 2004-04-22 2005-11-10 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
DE102005005446A1 (en) * 2005-02-04 2006-08-10 Grünenthal GmbH Break-resistant dosage forms with sustained release
DE502004004205D1 (en) * 2003-08-06 2007-08-09 Gruenenthal Gmbh AGAINST MISUSE SECURED PHARMACEUTICAL FORM
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE10336400A1 (en) 2003-08-06 2005-03-24 Grünenthal GmbH Anti-abuse dosage form
DE10361596A1 (en) * 2003-12-24 2005-09-29 Grünenthal GmbH Process for producing an anti-abuse dosage form
US20050053659A1 (en) * 2003-09-10 2005-03-10 Pace Gary W. Methods and compositions for reducing the risk associated with the administration of opioid analgesics in patients with diagnosed or undiagnosed respiratory illness
US20050074493A1 (en) * 2003-10-03 2005-04-07 Mehta Atul M. Extended release formulations of opioids and method of use thereof
US7201920B2 (en) 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US8883204B2 (en) * 2003-12-09 2014-11-11 Purdue Pharma L.P. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
EP1691892B1 (en) * 2003-12-09 2007-02-28 Euro-Celtique S.A. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
TWI350762B (en) 2004-02-12 2011-10-21 Euro Celtique Sa Particulates
GB0403098D0 (en) 2004-02-12 2004-03-17 Euro Celtique Sa Extrusion
BRPI0508769A (en) * 2004-03-30 2007-08-28 Euro Celtique Sa tamper-resistant dosage form comprising an adsorbent and an adverse agent
TW201509943A (en) 2004-03-30 2015-03-16 Euro Celtique Sa Oxycodone hydrochloride composition, pharmaceutical dosage form, sustained release oral dosage form and pharmaceutically acceptable package having less than 25 PPM 14-hydroxycodeinone
US20050226929A1 (en) * 2004-04-12 2005-10-13 Jianbo Xie Controlled release opioid analgesic formulation
EP1604666A1 (en) 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the Chronic Obstructive Pulmonary Disease (COPD)
EP1604667A1 (en) * 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the restless leg syndrome
US20070224269A1 (en) * 2004-06-10 2007-09-27 Rubino Orapin P Controlled Release Pharmaceutical Formulation
HUE037643T2 (en) 2004-06-12 2018-09-28 Collegium Pharmaceutical Inc Abuse-deterrent drug formulations
DE102004032049A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
DE102004032103A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
GB2418854B (en) 2004-08-31 2009-12-23 Euro Celtique Sa Multiparticulates
US9326959B2 (en) 2004-09-01 2016-05-03 Purdue Pharma, L.P. Opioid dosage forms having dose proportional steady state Cave and AUC and less than dose proportional single dose Cmax
LT2767292T (en) 2004-09-17 2016-12-12 Durect Corporation Sustained Local Anesthetic Composition Containing SAIB
US20080152595A1 (en) * 2004-11-24 2008-06-26 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
EP1830886B1 (en) 2004-12-27 2016-04-13 Eisai R&D Management Co., Ltd. Method for stabilizing anti-dementia drug
US20090208579A1 (en) * 2004-12-27 2009-08-20 Eisai R & D Management Co., Ltd. Matrix Type Sustained-Release Preparation Containing Basic Drug or Salt Thereof, and Method for Manufacturing the Same
US20060280789A1 (en) * 2004-12-27 2006-12-14 Eisai Research Institute Sustained release formulations
CA2594373A1 (en) * 2005-01-28 2006-08-03 Euro-Celtique S.A. Alcohol resistant dosage forms
DE102005005449A1 (en) * 2005-02-04 2006-08-10 Grünenthal GmbH Process for producing an anti-abuse dosage form
EP1695700A1 (en) * 2005-02-28 2006-08-30 Euro-Celtique S.A. Dosage form containing oxycodone and naloxone
EP1702558A1 (en) 2005-02-28 2006-09-20 Euro-Celtique S.A. Method and device for the assessment of bowel function
US20060281775A1 (en) * 2005-06-14 2006-12-14 Applied Pharmacy Services, Inc. Two-component pharmaceutical composition for the treatment of pain
US7884136B2 (en) 2005-06-27 2011-02-08 Biovail Laboratories International S.R.L. Modified-release formulations of a bupropion salt
US20070027105A1 (en) 2005-07-26 2007-02-01 Alza Corporation Peroxide removal from drug delivery vehicle
GB2431875A (en) * 2005-10-31 2007-05-09 Alza Corp Methods of reducing alcohol-induced dose dumping for opioid sustained release oral dosage forms
CN1957909B (en) * 2005-10-31 2013-09-11 阿尔扎公司 Methods of reducing alcohol-induced dose dumping for opioid sustained release oral dosage forms
PL116330U1 (en) * 2005-10-31 2007-04-02 Alza Corp Method for the reduction of alcohol provoked rapid increase in the released dose of the orally administered opioide with prolonged liberation
US20090022798A1 (en) * 2007-07-20 2009-01-22 Abbott Gmbh & Co. Kg Formulations of nonopioid and confined opioid analgesics
US20090317355A1 (en) * 2006-01-21 2009-12-24 Abbott Gmbh & Co. Kg, Abuse resistant melt extruded formulation having reduced alcohol interaction
US20100172989A1 (en) * 2006-01-21 2010-07-08 Abbott Laboratories Abuse resistant melt extruded formulation having reduced alcohol interaction
EP3332788A1 (en) 2006-02-03 2018-06-13 Opko Renal, LLC Treating vitamin d insufficiency and deficiency with 25-hydroxyvitamin d2 and 25-hydroxyvitamin d3
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
CN101400731A (en) * 2006-03-15 2009-04-01 城北化学工业株式会社 Stabilized polyolefin resin and method of stabilizing polyolefin resin
US20070281016A1 (en) * 2006-06-06 2007-12-06 Endo Pharmaceuticals Inc., A Delaware Corporation Sustained release oxycodone composition with acrylic polymer and surfactant
US20070281017A1 (en) * 2006-06-06 2007-12-06 Endo Pharmaceuticals Inc., A Delaware Corporation Sustained release oxycodone composition with acrylic polymer and metal hydroxide
US20080069891A1 (en) 2006-09-15 2008-03-20 Cima Labs, Inc. Abuse resistant drug formulation
PL2526932T3 (en) 2006-06-19 2017-12-29 Alpharma Pharmaceuticals Llc Pharmaceutical composition
ES2670029T3 (en) 2006-06-21 2018-05-29 Opko Ireland Global Holdings, Ltd. Therapy using vitamin D replenishment agent and vitamin D hormone replacement agent
KR101445757B1 (en) * 2006-08-04 2014-10-02 에씨팜 Granule and orally disintegrating tablet comprising oxycodone
BRPI0714484A2 (en) * 2006-08-16 2013-04-24 Auspex Pharmaceuticals Inc compound, method of treating a mammal suffering from a disease or condition, method of treating a member suffering from a disease, disorder, symptom or condition and pharmaceutical composition
SA07280459B1 (en) 2006-08-25 2011-07-20 بيورديو فارما إل. بي. Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic
US8445018B2 (en) 2006-09-15 2013-05-21 Cima Labs Inc. Abuse resistant drug formulation
US8653066B2 (en) 2006-10-09 2014-02-18 Charleston Laboratories, Inc. Pharmaceutical compositions
US8337883B2 (en) 2006-11-03 2012-12-25 Durect Corporation Transdermal delivery systems
DE102007011485A1 (en) 2007-03-07 2008-09-11 Grünenthal GmbH Dosage form with more difficult abuse
US11752158B2 (en) 2007-04-25 2023-09-12 Eirgen Pharma Ltd. Method of treating vitamin D insufficiency and deficiency
CA2683514C (en) 2007-04-25 2019-07-09 Proventiv Therapeutics, Llc Method of safely and effectively treating and preventing secondary hyperparathyroidism in chronic kidney disease
KR101691876B1 (en) 2007-04-25 2017-01-02 사이토크로마 인코포레이티드 Oral controlled release compositions comprising vitamin d compound and waxy carrier
US8202542B1 (en) 2007-05-31 2012-06-19 Tris Pharma Abuse resistant opioid drug-ion exchange resin complexes having hybrid coatings
AU2008258596B2 (en) 2007-06-04 2013-02-14 Egalet Ltd Controlled release pharmaceutical compositions for prolonged effect
US20090124650A1 (en) * 2007-06-21 2009-05-14 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol
US20080318994A1 (en) * 2007-06-21 2008-12-25 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instruction on Dosing for Renal Impairment
US20080318993A1 (en) * 2007-06-21 2008-12-25 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instruction on Dosing for Hepatic Impairment
JP5730572B2 (en) * 2007-09-13 2015-06-10 シマ ラブス インク. Abuse resistant formulation
PT2057984E (en) 2007-11-09 2010-03-10 Acino Pharma Ag Retard tablets with hydromorphon
CA2706658A1 (en) 2007-12-06 2009-06-18 Durect Corporation Methods useful for the treatment of pain, arthritic conditions or inflammation associated with a chronic condition
AU2008346870A1 (en) * 2007-12-17 2009-07-16 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
US20100151014A1 (en) * 2008-12-16 2010-06-17 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
EP2240022B1 (en) 2008-01-09 2016-12-28 Charleston Laboratories, Inc. Bilayered tablets comprising oxycodone and promethazine
EP2249811A1 (en) * 2008-01-25 2010-11-17 Grünenthal GmbH Pharmaceutical dosage form
US20090246276A1 (en) 2008-01-28 2009-10-01 Graham Jackson Pharmaceutical Compositions
US9226907B2 (en) 2008-02-01 2016-01-05 Abbvie Inc. Extended release hydrocodone acetaminophen and related methods and uses thereof
KR101094231B1 (en) 2008-02-18 2011-12-14 하나제약 주식회사 Sustained release solid formulations and methods of manufacturing the same
WO2009114648A1 (en) 2008-03-11 2009-09-17 Depomed Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
EP3112476B1 (en) 2008-04-02 2023-08-02 EirGen Pharma Ltd. Methods, compositions, uses, and kits useful for vitamin d deficiency and related disorders
US20100004762A1 (en) * 2008-04-24 2010-01-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20100125561A1 (en) * 2008-04-24 2010-05-20 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20100041958A1 (en) * 2008-04-24 2010-02-18 Searete Llc Computational system and method for memory modification
US9282927B2 (en) 2008-04-24 2016-03-15 Invention Science Fund I, Llc Methods and systems for modifying bioactive agent use
US9662391B2 (en) * 2008-04-24 2017-05-30 The Invention Science Fund I Llc Side effect ameliorating combination therapeutic products and systems
US20100069724A1 (en) * 2008-04-24 2010-03-18 Searete Llc Computational system and method for memory modification
US20090270694A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring and modifying a combination treatment
US20100130811A1 (en) * 2008-04-24 2010-05-27 Searete Llc Computational system and method for memory modification
US20100081861A1 (en) * 2008-04-24 2010-04-01 Searete Llc Computational System and Method for Memory Modification
US9560967B2 (en) * 2008-04-24 2017-02-07 The Invention Science Fund I Llc Systems and apparatus for measuring a bioactive agent effect
US20100280332A1 (en) * 2008-04-24 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring bioactive agent use
US9649469B2 (en) * 2008-04-24 2017-05-16 The Invention Science Fund I Llc Methods and systems for presenting a combination treatment
US8876688B2 (en) * 2008-04-24 2014-11-04 The Invention Science Fund I, Llc Combination treatment modification methods and systems
US20100041964A1 (en) * 2008-04-24 2010-02-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring and modifying a combination treatment
US20090269329A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Combination Therapeutic products and systems
US20090271009A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Combination treatment modification methods and systems
US9239906B2 (en) * 2008-04-24 2016-01-19 The Invention Science Fund I, Llc Combination treatment selection methods and systems
US20090312595A1 (en) * 2008-04-24 2009-12-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for memory modification
US20100076249A1 (en) * 2008-04-24 2010-03-25 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20090270688A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for presenting a combination treatment
US20100081860A1 (en) * 2008-04-24 2010-04-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational System and Method for Memory Modification
US20090271122A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring and modifying a combination treatment
US20100100036A1 (en) * 2008-04-24 2010-04-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational System and Method for Memory Modification
US20090271347A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring bioactive agent use
US20100042578A1 (en) * 2008-04-24 2010-02-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20100063368A1 (en) * 2008-04-24 2010-03-11 Searete Llc, A Limited Liability Corporation Computational system and method for memory modification
US9026369B2 (en) * 2008-04-24 2015-05-05 The Invention Science Fund I, Llc Methods and systems for presenting a combination treatment
US9449150B2 (en) * 2008-04-24 2016-09-20 The Invention Science Fund I, Llc Combination treatment selection methods and systems
US8930208B2 (en) * 2008-04-24 2015-01-06 The Invention Science Fund I, Llc Methods and systems for detecting a bioactive agent effect
US9064036B2 (en) * 2008-04-24 2015-06-23 The Invention Science Fund I, Llc Methods and systems for monitoring bioactive agent use
US20090312668A1 (en) * 2008-04-24 2009-12-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20090271375A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Combination treatment selection methods and systems
US20100022820A1 (en) * 2008-04-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20100017001A1 (en) * 2008-04-24 2010-01-21 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
HUE030803T2 (en) 2008-05-09 2017-06-28 Gruenenthal Gmbh Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step
US20090291975A1 (en) * 2008-05-20 2009-11-26 Warren Stern Dual opioid pain therapy
ES2635733T3 (en) * 2008-07-07 2017-10-04 Euro-Celtique S.A. Use of opioid antagonists to treat urinary retention
US20100260844A1 (en) 2008-11-03 2010-10-14 Scicinski Jan J Oral pharmaceutical dosage forms
NZ594207A (en) 2009-02-06 2013-03-28 Egalet Ltd Immediate release composition resistant to abuse by intake of alcohol
EP3045043B1 (en) 2009-02-26 2020-04-29 Relmada Therapeutics, Inc. Extended release oral pharmaceutical compositions of 3-hydroxy-n-methylmorphinan and method of use
SG174286A1 (en) 2009-03-10 2011-10-28 Euro Celtique Sa Immediate release pharmaceutical compositions comprising oxycodone and naloxone
US8811578B2 (en) * 2009-03-23 2014-08-19 Telemanager Technologies, Inc. System and method for providing local interactive voice response services
EP2445487A2 (en) 2009-06-24 2012-05-02 Egalet Ltd. Controlled release formulations
WO2011006012A1 (en) 2009-07-08 2011-01-13 Charleston Laboratories Inc. Pharmaceutical compositions
EP2456427B1 (en) 2009-07-22 2015-03-04 Grünenthal GmbH Hot-melt extruded controlled release dosage form
PE20120572A1 (en) * 2009-07-22 2012-06-06 Gruenenthal Chemie HANDLING RESISTANT STABILIZED OXIDATION DOSAGE FORM
US20110046173A1 (en) * 2009-08-24 2011-02-24 Warren Charles Stern Combination analgesic opioid pain therapy
AU2010286354A1 (en) * 2009-08-31 2012-04-19 Depomed, Inc. Gastric retentive pharmaceutical compositions for immediate and extended release of acetaminophen
AU2010300641B2 (en) * 2009-09-30 2016-03-17 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
US20110104272A1 (en) * 2009-11-05 2011-05-05 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of acetaminophen and phenylephrine
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US9198861B2 (en) 2009-12-22 2015-12-01 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
US8597681B2 (en) 2009-12-22 2013-12-03 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
EP2531176B1 (en) * 2010-02-03 2016-09-07 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of an extruder
JP5819329B2 (en) * 2010-03-09 2015-11-24 アルカーメス ファーマ アイルランド リミテッド Alcohol-resistant enteric pharmaceutical composition
HUE048464T2 (en) 2010-03-29 2020-07-28 Opko Ireland Global Holdings Ltd Methods and compositions for reducing parathyroid levels
MX2012012991A (en) 2010-05-11 2012-11-30 Cima Labs Inc Alcoholres i stant metoprolol - containing extended - release oral dosage forms.
US20120009261A1 (en) 2010-07-06 2012-01-12 Grünenthal GmbH Novel gastro-retentive dosage forms
PE20131126A1 (en) 2010-09-02 2013-10-21 Gruenenthal Chemie ALTERATION RESISTANT DOSAGE FORM INCLUDING AN ANIONIC POLYMER
NZ607392A (en) 2010-09-02 2015-03-27 Gruenenthal Chemie Tamper resistant dosage form comprising inorganic salt
ES2444591T3 (en) 2010-10-28 2014-02-25 Acino Pharma Ag Medication with the active substance hydromorphone with improved storage stability
ES2643291T3 (en) 2010-12-22 2017-11-22 Purdue Pharma L.P. Controlled release dosage forms with inviolable closure coated
CA2822769C (en) 2010-12-23 2016-10-04 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
KR20160031038A (en) 2011-02-02 2016-03-21 알파마 파머슈티컬스 엘엘씨 Pharmaceutical composition comprising opioid agonist and sequestered antagonist
US9119809B2 (en) 2011-03-23 2015-09-01 Ironshore Pharmaceuticals & Development, Inc. Compositions for treatment of attention deficit hyperactivity disorder
US9498447B2 (en) 2011-03-23 2016-11-22 Ironshore Pharmaceuticals & Development, Inc. Compositions for treatment of attention deficit hyperactivity disorder
US10292937B2 (en) 2011-03-23 2019-05-21 Ironshore Pharmaceuticals & Development, Inc. Methods of treatment of attention deficit hyperactivity disorder
US8927010B2 (en) 2011-03-23 2015-01-06 Ironshore Pharmaceuticals & Development, Inc. Compositions for treatment of attention deficit hyperactivity disorder
US11241391B2 (en) 2011-03-23 2022-02-08 Ironshore Pharmaceuticals & Development, Inc. Compositions for treatment of attention deficit hyperactivity disorder
US8916588B2 (en) 2011-03-23 2014-12-23 Ironshore Pharmaceuticals & Development, Inc. Methods for treatment of attention deficit hyperactivity disorder
US9603809B2 (en) 2011-03-23 2017-03-28 Ironshore Pharmaceuticals & Development, Inc. Methods of treatment of attention deficit hyperactivity disorder
EP4011364B1 (en) 2011-03-23 2023-12-13 Ironshore Pharmaceuticals & Development, Inc. Methods and compositions for treatment of attention deficit disorder
US10905652B2 (en) 2011-03-23 2021-02-02 Ironshore Pharmaceuticals & Development, Inc. Compositions for treatment of attention deficit hyperactivity disorder
US9283214B2 (en) 2011-03-23 2016-03-15 Ironshore Pharmaceuticals & Development, Inc. Compositions for treatment of attention deficit hyperactivity disorder
US8741885B1 (en) 2011-05-17 2014-06-03 Mallinckrodt Llc Gastric retentive extended release pharmaceutical compositions
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
US9050335B1 (en) 2011-05-17 2015-06-09 Mallinckrodt Llc Pharmaceutical compositions for extended release of oxycodone and acetaminophen resulting in a quick onset and prolonged period of analgesia
HUE031251T2 (en) 2011-06-30 2017-07-28 Develco Pharma Schweiz Ag Controlled release oral dosage form comprising oxycodone
EP2736495B1 (en) 2011-07-29 2017-08-23 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
DK2736497T3 (en) 2011-07-29 2017-11-13 Gruenenthal Gmbh Shock-resistant tablet that provides an immediate release of a drug.
MX356421B (en) 2012-02-28 2018-05-29 Gruenenthal Gmbh Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer.
WO2013153451A2 (en) * 2012-04-09 2013-10-17 QRxPharma Ltd. Controlled release formulations of opioids
CN110101702A (en) 2012-04-17 2019-08-09 普渡制药公司 System and method for treating bad pharmacodynamics response caused by opioid
LT2838512T (en) 2012-04-18 2018-11-12 GrĆ¼nenthal GmbH Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
EP2877161A1 (en) 2012-07-06 2015-06-03 Egalet Ltd. Abuse deterrent pharmaceutical compositions for controlled release
EP2872121B1 (en) 2012-07-12 2018-09-05 SpecGx LLC Extended release, abuse deterrent pharmaceutical compositions
US9101636B2 (en) 2012-11-30 2015-08-11 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
KR101840526B1 (en) 2013-02-05 2018-03-20 퍼듀 퍼머 엘피 Tamper resistant pharmaceutical formulations
CN105120659A (en) 2013-03-15 2015-12-02 度瑞公司 Compositions with a rheological modifier to reduce dissolution variability
KR101847947B1 (en) 2013-03-15 2018-05-28 옵코 아이피 홀딩스 Ⅱ 인코포레이티드 Stabilized modified release vitamin d formulation
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
MX2015016254A (en) 2013-05-29 2016-04-20 Gruenenthal Gmbh Tamper resistant dosage form with bimodal release profile.
KR20160031526A (en) 2013-07-12 2016-03-22 그뤼넨탈 게엠베하 Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
NZ716267A (en) 2013-07-23 2017-05-26 Euro Celtique Sa A combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation
CA3042642A1 (en) 2013-08-12 2015-02-19 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
WO2015065547A1 (en) 2013-10-31 2015-05-07 Cima Labs Inc. Immediate release abuse-deterrent granulated dosage forms
CA2931553C (en) 2013-11-26 2022-01-18 Grunenthal Gmbh Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
US10172797B2 (en) 2013-12-17 2019-01-08 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
AU2015237723B2 (en) 2014-03-26 2018-04-26 Sun Pharma Advanced Research Company Ltd. Abuse deterrent immediate release biphasic matrix solid dosage form
EP3142646A1 (en) 2014-05-12 2017-03-22 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
TW202136296A (en) 2014-06-27 2021-10-01 美商C2N醫療診斷有限責任公司 Humanized anti-tau antibodies
EP3169315B1 (en) 2014-07-17 2020-06-24 Pharmaceutical Manufacturing Research Services, Inc. Immediate release abuse deterrent liquid fill dosage form
SG10201911274TA (en) 2014-08-07 2020-02-27 Opko Ireland Global Holdings Ltd Adjunctive therapy with 25-hydroxyvitamin d
US9849124B2 (en) 2014-10-17 2017-12-26 Purdue Pharma L.P. Systems and methods for treating an opioid-induced adverse pharmacodynamic response
AU2015336065A1 (en) 2014-10-20 2017-05-04 Pharmaceutical Manufacturing Research Services, Inc. Extended release abuse deterrent liquid fill dosage form
CA2936740C (en) 2014-10-31 2017-10-10 Purdue Pharma Methods and compositions particularly for treatment of attention deficit disorder
WO2016170097A1 (en) 2015-04-24 2016-10-27 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
WO2017040607A1 (en) 2015-08-31 2017-03-09 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
WO2017042325A1 (en) 2015-09-10 2017-03-16 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US9943513B1 (en) 2015-10-07 2018-04-17 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
JP2019507181A (en) 2016-03-04 2019-03-14 チャールストン ラボラトリーズ,インコーポレイテッド Pharmaceutical composition
TWI747893B (en) 2016-03-28 2021-12-01 愛爾蘭商歐科愛爾蘭全球控股股份有限公司 Methods of vitamin d treatment
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
WO2017222575A1 (en) 2016-06-23 2017-12-28 Collegium Pharmaceutical, Inc. Process of making more stable abuse-deterrent oral formulations
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
WO2019087084A1 (en) 2017-11-02 2019-05-09 Eman Biodiscoveries Sd. Bhd. Extract of orthosiphon stamineus, formulations, and uses thereof
US10722473B2 (en) 2018-11-19 2020-07-28 Purdue Pharma L.P. Methods and compositions particularly for treatment of attention deficit disorder
WO2020225773A1 (en) 2019-05-07 2020-11-12 Clexio Biosciences Ltd. Abuse-deterrent dosage forms containing esketamine
CA3167217A1 (en) 2020-01-13 2021-07-22 Durect Corporation Sustained release drug delivery systems with reduced impurities and related methods
CN115702888A (en) * 2021-08-13 2023-02-17 合肥立方制药股份有限公司 Oxycodone hydrochloride osmotic pump sustained-release tablet and preparation method thereof

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US291883A (en) * 1884-01-15 Faucet
US2738303A (en) * 1952-07-18 1956-03-13 Smith Kline French Lab Sympathomimetic preparation
US2921883A (en) * 1957-05-03 1960-01-19 Smith Kline French Lab Novel coating material for medicaments
NL263733A (en) * 1960-04-19 1900-01-01
US4132753A (en) * 1965-02-12 1979-01-02 American Cyanamid Company Process for preparing oral sustained release granules
US3458622A (en) * 1967-04-07 1969-07-29 Squibb & Sons Inc Controlled release tablet
US3492397A (en) * 1967-04-07 1970-01-27 Warner Lambert Pharmaceutical Sustained release dosage in the pellet form and process thereof
US3634584A (en) * 1969-02-13 1972-01-11 American Home Prod Sustained action dosage form
US3870790A (en) * 1970-01-22 1975-03-11 Forest Laboratories Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose
GB1405088A (en) 1971-06-03 1975-09-03 Mundipharma Ag Slow release formulation
US3773920A (en) * 1971-07-14 1973-11-20 Nikken Chemicals Co Ltd Sustained release medicinal composition
US3965256A (en) * 1972-05-16 1976-06-22 Synergistics Slow release pharmaceutical compositions
US3845770A (en) * 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) * 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US3922339A (en) * 1974-06-20 1975-11-25 Kv Pharm Co Sustained release medicant
GB1478759A (en) * 1974-11-18 1977-07-06 Alza Corp Process for forming outlet passageways in pills using a laser
US3946899A (en) * 1975-02-07 1976-03-30 Allain Charles V Sugar cane planter
JPS5535031A (en) * 1978-09-04 1980-03-11 Shin Etsu Chem Co Ltd Enteric coating composition
WO1980000659A1 (en) * 1978-10-02 1980-04-17 Purdue Research Foundation Food and pharmaceutical coating composition,method of preparation and products so coated
IE48715B1 (en) * 1978-12-22 1985-05-01 Elan Corp Plc New galencial forms for administration of medicaments by oral route,with programmed release and processes for preparing same
FI63335B (en) * 1979-02-02 1983-02-28 Orion Yhtymae Oy FARING REFERENCE FOR A TABLETTER WITH A LIGHT LIGHT OF AN EFFECTIVE
US4259314A (en) * 1979-12-10 1981-03-31 Hans Lowey Method and composition for the preparation of controlled long-acting pharmaceuticals
DE3024416C2 (en) * 1980-06-28 1982-04-15 Gödecke AG, 1000 Berlin Process for the production of medicaments with sustained release of active substances
US4464378A (en) * 1981-04-28 1984-08-07 University Of Kentucky Research Foundation Method of administering narcotic antagonists and analgesics and novel dosage forms containing same
DE3126703A1 (en) * 1981-07-07 1983-01-27 Dr. Karl Thomae Gmbh, 7950 Biberach BROMHEXIN RETARD FORM AND METHOD FOR THEIR PRODUCTION
US4377568A (en) * 1981-08-12 1983-03-22 Merck Sharp & Dohme (I.A.) Corp. Preparation of aqueous alcoholic dispersions of pH sensitive polymers and plasticizing agents and a method of enteric coating dosage forms using same
US4369172A (en) 1981-12-18 1983-01-18 Forest Laboratories Inc. Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose
DE3208791A1 (en) * 1982-03-11 1983-09-22 Röhm GmbH, 6100 Darmstadt METHOD FOR COATING MEDICINAL PRODUCTS BY MEANS OF A COATING AGENT DISPERSED IN WATER
US4389393A (en) * 1982-03-26 1983-06-21 Forest Laboratories, Inc. Sustained release therapeutic compositions based on high molecular weight hydroxypropylmethylcellulose
US4443428A (en) * 1982-06-21 1984-04-17 Euroceltique, S.A. Extended action controlled release compositions
DE3314003A1 (en) * 1983-04-18 1984-10-18 Boehringer Ingelheim KG, 6507 Ingelheim DIVISIBLE TABLET WITH DELAYED ACTIVE SUBSTANCE RELEASE AND METHOD FOR THE PRODUCTION THEREOF
US4548990A (en) * 1983-08-15 1985-10-22 Ciba-Geigy Corporation Crosslinked, porous polymers for controlled drug delivery
US4629621A (en) * 1984-07-23 1986-12-16 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4894234A (en) * 1984-10-05 1990-01-16 Sharma Shri C Novel drug delivery system for antiarrhythmics
JPS61152765A (en) * 1984-12-27 1986-07-11 Nippon Ekishiyou Kk Synthetic resin product including compound clathrated with cyclodextrin
US4600645A (en) * 1985-01-31 1986-07-15 Warner-Lambert Company Process for treating dosage forms
NL8500724A (en) * 1985-03-13 1986-10-01 Univ Groningen DEVICES FOR REGULAR RELEASE OF ACTIVE SUBSTANCES AND METHOD OF MANUFACTURE THEREOF
ATE84713T1 (en) * 1985-05-13 1993-02-15 Miles Inc USE OF CALCIUM ANTAGONISTS TO PREPARING COMPOSITIONS FOR WITHDRAWAL SYMPTOMS.
GB8519310D0 (en) * 1985-07-31 1985-09-04 Zyma Sa Granular active substances
GB8521350D0 (en) * 1985-08-28 1985-10-02 Euro Celtique Sa Analgesic composition
GB8613689D0 (en) * 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
GB8613688D0 (en) * 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
EP0249347B1 (en) 1986-06-10 1994-06-29 Euroceltique S.A. Controlled release dihydrocodeine composition
US4970075A (en) 1986-07-18 1990-11-13 Euroceltique, S.A. Controlled release bases for pharmaceuticals
US4861598A (en) * 1986-07-18 1989-08-29 Euroceltique, S.A. Controlled release bases for pharmaceuticals
GB8626098D0 (en) * 1986-10-31 1986-12-03 Euro Celtique Sa Controlled release hydromorphone composition
US5026560A (en) * 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
US5266311A (en) * 1987-05-28 1993-11-30 Immunex Corporation Bovine interleukin-1α
US5219575A (en) * 1987-06-26 1993-06-15 Duphar International Research B.V. Compositions with controlled zero-order delivery rate and method of preparing these compositions
DE3721721C1 (en) * 1987-07-01 1988-06-09 Hoechst Ag Process for coating granules
US5068110A (en) * 1987-09-29 1991-11-26 Warner-Lambert Company Stabilization of enteric coated dosage form
US4862598A (en) * 1987-10-01 1989-09-05 Perceptron, Inc. Quick connect/disconnect repeatable sensor mounting apparatus
US5019397A (en) * 1988-04-21 1991-05-28 Alza Corporation Aqueous emulsion for pharmaceutical dosage form
US5024842A (en) * 1988-04-28 1991-06-18 Alza Corporation Annealed coats
JPH01287019A (en) * 1988-05-12 1989-11-17 Tanabe Seiyaku Co Ltd Slowly releasing drug preparation
JP2681373B2 (en) * 1988-07-18 1997-11-26 塩野義製薬株式会社 Method for manufacturing sustained-release preparation
JP2850376B2 (en) * 1988-08-02 1999-01-27 日産化学工業株式会社 Anticancer drug efficacy enhancer
US4983730A (en) * 1988-09-02 1991-01-08 Hoechst Celanese Corporation Water soluble cellulose acetate composition having improved processability and tensile properties
US5178868A (en) * 1988-10-26 1993-01-12 Kabi Pharmacia Aktiebolaq Dosage form
US5196203A (en) * 1989-01-06 1993-03-23 F. H. Faulding & Co. Limited Theophylline dosage form
US5330766A (en) * 1989-01-06 1994-07-19 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
US5202128A (en) * 1989-01-06 1993-04-13 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
US5007790A (en) * 1989-04-11 1991-04-16 Depomed Systems, Inc. Sustained-release oral drug dosage form
US5126145A (en) * 1989-04-13 1992-06-30 Upsher Smith Laboratories Inc Controlled release tablet containing water soluble medicament
US5133974A (en) * 1989-05-05 1992-07-28 Kv Pharmaceutical Company Extended release pharmaceutical formulations
US5122384A (en) * 1989-05-05 1992-06-16 Kv Pharmaceutical Company Oral once-per-day organic nitrate formulation which does not induce tolerance
FR2648020B1 (en) * 1989-06-12 1992-03-13 Rhone Poulenc Sante USE OF COMPOSITIONS DEGRADABLY BY ENZYMATICS FOR THE COATING OF FOOD ADDITIVES FOR RUMINANTS
DK161743C (en) * 1989-07-03 1992-02-17 Niro Atomizer As PROCEDURE AND APPARATUS FOR AGGLOMERATION OF A POWDER-SHAPED MATERIAL
EP0418596A3 (en) * 1989-09-21 1991-10-23 American Cyanamid Company Controlled release pharmaceutical compositions from spherical granules in tabletted oral dosage unit form
US5248516A (en) * 1989-12-19 1993-09-28 Fmc Corporation Film-forming composition: method of producing same and use for coating pharmaceuticals and foods and the like
IE66933B1 (en) * 1990-01-15 1996-02-07 Elan Corp Plc Controlled absorption naproxen formulation for once-daily administration
US5206030A (en) * 1990-02-26 1993-04-27 Fmc Corporation Film-forming composition and use for coating pharmaceuticals, foods and the like
JP2542122B2 (en) * 1990-04-18 1996-10-09 旭化成工業株式会社 Spherical nucleus, spherical granule and method for producing the same
DK0472502T3 (en) * 1990-08-24 1995-10-09 Spirig Ag Process for producing pellets
JP2669945B2 (en) * 1991-02-05 1997-10-29 ファナック株式会社 Profile control device
US5132142A (en) * 1991-03-19 1992-07-21 Glatt Gmbh Apparatus and method for producing pellets by layering power onto particles
CA2108575C (en) * 1991-04-16 2002-10-22 Kouichi Nakamichi Method of manufacturing solid dispersion
KR100221695B1 (en) * 1991-08-12 1999-09-15 그린 마틴, 브라이언 쥐 테슬리 Pharmaceutical spheroid formulation
US5215758A (en) * 1991-09-11 1993-06-01 Euroceltique, S.A. Controlled release matrix suppository for pharmaceuticals
US5266331A (en) * 1991-11-27 1993-11-30 Euroceltique, S.A. Controlled release oxycodone compositions
US5656295A (en) * 1991-11-27 1997-08-12 Euro-Celtique, S.A. Controlled release oxycodone compositions
US5958459A (en) * 1991-12-24 1999-09-28 Purdue Pharma L.P. Opioid formulations having extended controlled released
US5681585A (en) * 1991-12-24 1997-10-28 Euro-Celtique, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US5968551A (en) * 1991-12-24 1999-10-19 Purdue Pharma L.P. Orally administrable opioid formulations having extended duration of effect
US5273760A (en) 1991-12-24 1993-12-28 Euroceltigue, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US5478577A (en) * 1993-11-23 1995-12-26 Euroceltique, S.A. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US5286493A (en) 1992-01-27 1994-02-15 Euroceltique, S.A. Stabilized controlled release formulations having acrylic polymer coating
GB9202464D0 (en) * 1992-02-05 1992-03-18 Danbiosyst Uk Composition for nasal administration
SE9202250D0 (en) * 1992-07-29 1992-07-29 Gacell Lab Ab CONTROLLED RELEASE MORPHINE PREPARATION
US5324351A (en) * 1992-08-13 1994-06-28 Euroceltique Aqueous dispersions of zein and preparation thereof
US5321012A (en) * 1993-01-28 1994-06-14 Virginia Commonwealth University Medical College Inhibiting the development of tolerance to and/or dependence on a narcotic addictive substance
CA2115792C (en) * 1993-03-05 2005-11-01 David J. Mayer Method for the treatment of pain
SE9301057L (en) * 1993-03-30 1994-10-01 Pharmacia Ab Controlled release preparation
IL110014A (en) * 1993-07-01 1999-11-30 Euro Celtique Sa Solid controlled-release oral dosage forms of opioid analgesics
US5879705A (en) * 1993-07-27 1999-03-09 Euro-Celtique S.A. Sustained release compositions of morphine and a method of preparing pharmaceutical compositions
DE4329794C2 (en) * 1993-09-03 1997-09-18 Gruenenthal Gmbh Tramadol salt-containing drugs with delayed release
US5891471A (en) * 1993-11-23 1999-04-06 Euro-Celtique, S.A. Pharmaceutical multiparticulates
US5500227A (en) * 1993-11-23 1996-03-19 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
KR100354702B1 (en) * 1993-11-23 2002-12-28 유로-셀티크 소시에떼 아노뉨 Manufacturing method and sustained release composition of pharmaceutical composition
US5411745A (en) * 1994-05-25 1995-05-02 Euro-Celtique, S.A. Powder-layered morphine sulfate formulations
US5460826A (en) * 1994-06-27 1995-10-24 Alza Corporation Morphine therapy
US5965161A (en) * 1994-11-04 1999-10-12 Euro-Celtique, S.A. Extruded multi-particulates
US5811126A (en) * 1995-10-02 1998-09-22 Euro-Celtique, S.A. Controlled release matrix for pharmaceuticals
US6419960B1 (en) * 1998-12-17 2002-07-16 Euro-Celtique S.A. Controlled release formulations having rapid onset and rapid decline of effective plasma drug concentrations

Also Published As

Publication number Publication date
EP1325746A1 (en) 2003-07-09
HU227815B1 (en) 2012-03-28
PL173574B1 (en) 1998-03-31
PT1502592E (en) 2007-09-17
NO932661L (en) 1993-09-24
FI118252B (en) 2007-09-14
FI116658B (en) 2006-01-31
ES2268189T3 (en) 2007-03-16
EP1810679A3 (en) 2007-10-03
DK1327446T4 (en) 2007-12-17
HK1059210A1 (en) 2004-06-25
ES2215983T3 (en) 2004-10-16
DK1438959T3 (en) 2007-09-17
US5508042A (en) 1996-04-16
NO20041662L (en) 1993-09-24
IL103909A0 (en) 1993-04-04
SK280295B6 (en) 1999-11-08
NO318890B1 (en) 2005-05-18
ES2287625T3 (en) 2007-12-16
DK1325746T3 (en) 2006-11-06
DE69233640D1 (en) 2006-08-24
HK1051803A1 (en) 2003-08-22
ES2215984T5 (en) 2008-03-16
FI20031888A (en) 2003-12-22
ATE144418T1 (en) 1996-11-15
EP1258246A2 (en) 2002-11-20
EP1258246B1 (en) 2004-03-17
JPH06507645A (en) 1994-09-01
BG97973A (en) 1994-05-27
NO932661D0 (en) 1993-07-23
DK0722730T3 (en) 2002-11-25
FI933330A0 (en) 1993-07-23
PT1327445E (en) 2004-07-30
AU3147693A (en) 1993-06-28
DE69233326T2 (en) 2005-03-10
DK0576643T3 (en) 1997-04-21
DE69233778D1 (en) 2010-02-25
SK92293A3 (en) 1994-04-06
NO307028B3 (en) 2009-05-25
DE69233327T2 (en) 2005-03-10
ES2213720T3 (en) 2004-09-01
HU0400357D0 (en) 2004-04-28
NO322378B1 (en) 2006-09-25
ES2096781T3 (en) 1997-03-16
EP1327446A1 (en) 2003-07-16
NO20041667L (en) 1993-09-24
US5549912A (en) 1996-08-27
EP1438959B1 (en) 2007-04-25
EP1327446B1 (en) 2004-03-17
EP1502592A1 (en) 2005-02-02
EP0722730B2 (en) 2013-08-07
US20060057210A1 (en) 2006-03-16
DE9219234U1 (en) 2001-03-29
EP2243484A2 (en) 2010-10-27
ES2339392T3 (en) 2010-05-19
HU227515B1 (en) 2011-07-28
ATE365041T1 (en) 2007-07-15
AU657027B2 (en) 1995-02-23
US20060099255A1 (en) 2006-05-11
EP1327445A1 (en) 2003-07-16
ATE261726T1 (en) 2004-04-15
ATE226822T1 (en) 2002-11-15
EP0722730A1 (en) 1996-07-24
HK1068004A1 (en) 2005-04-22
CA2098738A1 (en) 1993-05-28
GR3022273T3 (en) 1997-04-30
DE69232837D1 (en) 2002-12-05
WO1993010765A1 (en) 1993-06-10
PT1325746E (en) 2006-11-30
MX9302968A (en) 1994-05-31
EP1327446B2 (en) 2007-08-22
EP1327445B1 (en) 2004-03-17
EP1810679A2 (en) 2007-07-25
DE69233326D1 (en) 2004-04-22
EP2106796A3 (en) 2009-11-04
ATE261725T1 (en) 2004-04-15
ZA929227B (en) 1993-07-12
YU49495B (en) 2006-08-17
NO20041939L (en) 1993-05-27
DE69214802D1 (en) 1996-11-28
EP2106796A2 (en) 2009-10-07
HU227514B1 (en) 2011-07-28
EP1774969A2 (en) 2007-04-18
HU227518B1 (en) 2011-07-28
FI933330A (en) 1993-07-23
HU0400225D0 (en) 2004-04-28
US20040105887A1 (en) 2004-06-03
HU0303097D0 (en) 2003-11-28
ES2215984T3 (en) 2004-10-16
PT1438959E (en) 2007-07-19
DE69233699T2 (en) 2008-02-28
CN1364458A (en) 2002-08-21
NO323334B1 (en) 2007-03-26
PT1810679E (en) 2010-02-18
EP2243484A3 (en) 2012-01-11
IL103909A (en) 1996-09-12
HK1059209A1 (en) 2004-06-25
US20020018810A1 (en) 2002-02-14
EP2340833A3 (en) 2012-09-12
NO996447L (en) 1993-09-24
BR9205498A (en) 1994-06-07
DE69214802T2 (en) 1997-05-07
HK1058474A1 (en) 2004-05-21
CN1087262A (en) 1994-06-01
FI20031890A (en) 2003-12-22
CZ300183B6 (en) 2009-03-11
HK1073255A1 (en) 2005-09-30
RS50056B (en) 2008-11-28
EP1774969A3 (en) 2007-10-03
EP1810679B1 (en) 2010-01-06
NO20043264L (en) 1993-09-24
DK0576643T5 (en) 2004-11-22
EP2289517B1 (en) 2014-05-07
HU0400224D0 (en) 2004-04-28
PT722730E (en) 2003-03-31
EP1502592B1 (en) 2007-06-20
CZ298499B6 (en) 2007-10-17
KR100280973B1 (en) 2001-02-01
ES2186737T3 (en) 2003-05-16
EP0722730B1 (en) 2002-10-30
PT1327446E (en) 2004-06-30
DK0722730T4 (en) 2013-11-18
EP1438959A1 (en) 2004-07-21
DK1327446T3 (en) 2004-08-02
CZ286913B6 (en) 2000-08-16
PH31679A (en) 1999-01-18
EP0576643A4 (en) 1994-03-18
EP2106797A3 (en) 2009-11-04
EP0576643B1 (en) 1996-10-23
HU0302920D0 (en) 2003-11-28
US5266331A (en) 1993-11-30
HU0400227D0 (en) 2004-04-28
HU224075B1 (en) 2005-05-30
DE69232837T2 (en) 2003-06-18
PL172236B1 (en) 1997-08-29
HU227517B1 (en) 2011-07-28
DK1810679T3 (en) 2010-02-08
DK0722730T5 (en) 2003-03-31
DE69232837T3 (en) 2014-01-02
DE69233691T2 (en) 2008-01-24
EP0576643A1 (en) 1994-01-05
EP2340833A2 (en) 2011-07-06
ES2186737T5 (en) 2014-01-17
HU9301517D0 (en) 1993-09-28
HU227516B1 (en) 2011-07-28
ATE454150T1 (en) 2010-01-15
US20040185098A1 (en) 2004-09-23
RS50055B (en) 2008-11-28
EP1325746B1 (en) 2006-07-12
FI118251B (en) 2007-09-14
EP2106797A2 (en) 2009-10-07
DE69233328T3 (en) 2008-02-07
DK200000364U3 (en) 2001-03-23
EP2289517A2 (en) 2011-03-02
DE69233328D1 (en) 2004-04-22
JP2002370983A (en) 2002-12-24
EP1258246A3 (en) 2003-01-08
BG61753B1 (en) 1998-05-29
US20040096500A1 (en) 2004-05-20
FI20031891A (en) 2003-12-22
HU228058B1 (en) 2012-09-28
CN1245958C (en) 2006-03-22
CN1165307C (en) 2004-09-08
JP3375960B2 (en) 2003-02-10
NO996447D0 (en) 1999-12-23
HU226929B1 (en) 2010-03-01
DE69233640T2 (en) 2007-06-14
DK1502592T3 (en) 2007-10-22
CZ176493A3 (en) 1994-04-13
DE69233691D1 (en) 2007-06-06
FI113152B (en) 2004-03-15
YU35893A (en) 1997-03-07
DE69233328T2 (en) 2005-03-10
US20060165791A1 (en) 2006-07-27
DK1258246T3 (en) 2004-07-05
NO325483B1 (en) 2008-05-13
CZ292849B6 (en) 2003-12-17
HU0401532D0 (en) 2004-09-28
RS50054B (en) 2008-11-28
NO307028B1 (en) 2000-01-31
US20030099704A1 (en) 2003-05-29
HU0400226D0 (en) 2004-04-28
FI20031889A (en) 2003-12-22
EP2289517A3 (en) 2012-07-04
DK1327445T3 (en) 2004-07-26
DE69233699D1 (en) 2007-08-02
DE69233327D1 (en) 2004-04-22
PT1258246E (en) 2004-06-30
ES2286523T3 (en) 2007-12-01
FI118250B (en) 2007-09-14
JP4016074B2 (en) 2007-12-05
ATE261727T1 (en) 2004-04-15
ATE360421T1 (en) 2007-05-15
ATE332691T1 (en) 2006-08-15
US20060165792A1 (en) 2006-07-27
US20010008639A1 (en) 2001-07-19
HUT69401A (en) 1995-09-28
RO115112B1 (en) 1999-11-30
RU2122411C1 (en) 1998-11-27

Similar Documents

Publication Publication Date Title
CA2098738C (en) Controlled release oxycodone compositions
US5656295A (en) Controlled release oxycodone compositions
US20130011543A1 (en) Controlled release oxycodone compositions
US20070275062A1 (en) Controlled release oxycodone compositions
US20070275065A1 (en) Controlled release oxycodone compositions
NZ247671A (en) Pharmaceutical (sustained release) compositions of oxycodone

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry