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Introduction
A minimal surface, like the soap film of Figure 1, has
the property that small pieces minimize area for a given
boundary, even though thewhole surfacemay be unstable.
At first, there were few explicit examples (see Figure 2):
the plane, the catenoid of Euler (1741), and the helicoid
of Meusnier (1776).

Many of the greatest mathematicians in history have
been challenged by minimal surfaces; some of themmade
spectacular advances in a relatively definite period, pro-
ducing golden ages of this theory: The first one occurred
approximately in the period 1830–1890, when renowned
mathematicians such as Enneper, Scherk, Schwarz, Rie-
mann, and Weierstrass made major advances on minimal
surfaces through the application of the newly created
field of complex analysis by providing analytic formulas
for a general minimal surface. Also in this period, fun-
damental research by Plateau on surface tension gave
a physical interpretation to the problem of minimizing
area with a given contour, which allowed the spread of
this minimization problem beyond mathematics, to the
point that since then it is customary to refer to it as the
Plateau problem. A second golden age ofminimal surfaces
took place from about 1914 to 1950, with the incipient
theory of partial differential equations: here, we highlight
the contributions of Bernstein, Courant, Douglas (who in
1936 won the first Fields Medal1 for his solution of the
Plateau problem), Morrey, Morse, Radó, and Shiffman. A
third golden age started in the 1960s, when giants of the
stature of Almgren, Alt, Calabi, do Carmo, Chern, Federer,
Finn, Fleming, Gackstatter, Gulliver, Hardt, Hildebrandt,
Jenkins, Lawson, Nitsche, Osserman, Serrin, Simon, and
Simons opened new routes through the use of multiple

Figure 2. The first explicit examples of minimal
surfaces were the plane, the catenoid (Euler, 1741),
and the helicoid (Meusnier, 1776).

techniques, from Riemann surfaces to geometric measure
theory, passing through integrable systems, conformal
geometry, and functional analysis. The appearance of
computers was crucial for the discovery in the eighties of
new examples of complete minimal surfaces without self-
intersections. The abundance of these newly discovered
examples led to new problems and conjectures about the
classification and structure of families of surfaces with
prescribed topology. More recent major contributors are
too numerous to list here.
1Shared with Ahlfors for his work on Riemann surfaces.

In this article we hope to convince the reader that as
with the previous milestones, we are currently witnessing
a new golden age of minimal surfaces, mostly favored
by a new tool discovered in 2004: the so-called Colding–
Minicozzi theory. This work, published in an impressive
series of four articles in the same issue of Annals of
Mathematics [2], analyzes the convergence of sequences
of embedded minimal disks without imposing a priori
uniform bounds on area or curvature. We will sketch
how this theory has helped to solve open problems that
were considered inaccessible until recently, and we will
venture, with all the reservations that predictions deserve,
to expose some of the most interesting open problems in
this field.

The theory of
minimal surfaces
is a confluence of
many branches of

mathematics.

In order to de-
velop these objectives
in a limited number
of pages, we must pay
the price of not going
into detail. There are
many articles, books,
and chapters of books
where interested read-
ers can satisfy their
curiosity, such as the
volume by Colding and

Minicozzi [1] or the survey by Meeks and me [3].

Basic Results
The theory of minimal surfaces is a confluence of many
branches of mathematics. We can define minimality in at
least eight different but equivalent ways, based on the
theory that we are most passionate about.

Let 𝑋∶ 𝑀 → ℝ3 be an isometric immersion of a Rie-
mannian surface in three-dimensional Euclidean space,
and let 𝑁∶ 𝑀 → 𝕊2(1) ⊂ ℝ3 be its unit normal or Gauss
map (here 𝕊2(1) denotes the sphere of radius 1 and
center the origin of ℝ3). If we perturb 𝑋 in a relatively
compact domain Ω ⊂ 𝑀 by a compactly supported dif-
ferentiable function 𝑓 ∈ 𝐶∞

0 (Ω), then 𝑋 + 𝑡𝑓𝑁 is again
an immersion for |𝑡| < 𝜀 and 𝜀 > 0 small enough. The
mean curvature 𝐻 ∈ 𝐶∞(𝑀) of 𝑋 (arithmetic mean of
the principal curvatures) is related to the area functional
𝐴(𝑡) = Area((𝑋+𝑡𝑓𝑁)(Ω)) bymeans of the first variation
of area formula:

(1) 𝐴′(0) = −2∫
Ω
𝑓𝐻𝑑𝐴,

where 𝑑𝐴 is the area element of 𝑀. Now we can state the
first two equivalent definitions of minimality.

Definition 1. A surface 𝑀 ⊂ ℝ3 is minimal if it is a crit-
ical point of the area functional for all variations with
compact support.

Definition 2. A surface𝑀 ⊂ ℝ3 is minimal when its mean
curvature vanishes identically.

Locally and after a rotation, every surface 𝑀 ⊂ ℝ3

can be written as the graph of a differentiable function
𝑢 = 𝑢(𝑥,𝑦). In 1762, Lagrange wrote the foundations of
the calculus of variations by finding the PDE associated
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to a critical point of the area functional when the surface
is a graph:

Definition 3. A surface 𝑀 ⊂ ℝ3 is minimal if around
any point it can be written as the graph of a function
𝑢 = 𝑢(𝑥,𝑦) that satisfies the second-order, quasi-linear
elliptic partial differential equation
(2) (1 + 𝑢2

𝑥)𝑢𝑦𝑦 − 2𝑢𝑥𝑢𝑦𝑢𝑥𝑦 + (1+ 𝑢2
𝑦)𝑢𝑥𝑥 = 0.

The above PDE can also be written in divergence form:

(3) div( ∇𝑢
√1+ |∇𝑢|2

) = 0.

Neglecting the gradient in the denominator of (3) leads
to the celebrated Laplace equation. This means that on
a small scale (where 𝑢 is close to a constant), minimal
surfaces inherit properties of harmonic functions, such as
the maximum principle, Harnack’s inequality, and others.
On a large scale, dramatic changes appear in the way
that global solutions to the Laplace and minimal surface
equations behave; perhaps the paradigmatic example of
this dichotomy is Bernstein’s theorem: the only solutions
of (3) defined in the whole of ℝ2 are the affine functions,
while of course there are many global harmonic functions.

A consequence of the second variation of area formula
(i.e., the expression for 𝐴′′(0)) shows that every minimal
surface minimizes area locally. This property justifies the
word minimal for these surfaces (not to be confused with
being a global area minimizer, which is a much more
restrictive property: the unique complete surfaces in ℝ3

that minimize area globally are the affine planes).

Definition 4. A surface 𝑀 ⊂ ℝ3 is minimal if every
point 𝑝 ∈ 𝑀 admits a neighborhood that minimizes area
among all surfaces with the same boundary.

Definitions 1 and 4 place minimal surfaces as 2-
dimensional analogues of geodesics in Riemannian geom-
etry and connect them with the calculus of variations.
Another functional of great importance is the energy,

𝐸 = ∫
Ω
|∇𝑋|2𝑑𝐴,

where again 𝑋∶ 𝑀 → ℝ3 is an isometric immersion and
Ω ⊂ 𝑀 is a relatively compact domain. Area and en-
ergy are related by the inequality 𝐸 ≥ 2𝐴, with equality
occurring exactly when 𝑋 is conformal. The fact that
every Riemannian surface admits local conformal (isother-
mal) coordinates allows us to give two other equivalent
definitions of minimality.

Definition 5. A conformal immersion 𝑋∶ 𝑀 → ℝ3 is
minimal if it is a critical point of the energy functional
for every compactly supported variation or, equivalently,
when every point on the surface admits a neighborhood
that minimizes energy among all surfaces with the same
boundary.

The classical formula Δ𝑋 = 2𝐻𝑁 that links the Lapla-
cian of an isometric immersion 𝑋∶ 𝑀 → ℝ3 with its mean
curvature function 𝐻 and Gauss map 𝑁 leads us to the
next definition.

Definition 6. An isometric immersion 𝑋 = (𝑥1, 𝑥2, 𝑥3)∶
𝑀 → ℝ3 of a Riemannian surface in three-dimensional
Euclidean space is said to be minimal if its coordinate
functions are harmonic: Δ𝑥𝑖 = 0, 𝑖 = 1, 2, 3.

From a physical point of view, the so-called Young’s
equation shows that the mean curvature of a surface sep-
arating two media expresses the difference of pressures
between the media. When both media are under the same
pressure, the surface that separates them isminimal. This
happens after dipping a wire frame (mathematically, a
nonnecessarily planar Jordan curve) in soapy water. How-
ever, soap bubbles that we all have blown have nonzero
constant mean curvature, because they enclose a volume
of air whose pressure is greater than the atmospheric
pressure.

Definition 7. A surface 𝑀 ⊂ ℝ3 is minimal if each point
𝑝 ∈ 𝑀 has a neighborhood that matches the soap film
spanned by the boundary of this neighborhood.

To give the last definition of minimality, remember
that the differential 𝑑𝑁𝑝 at each point 𝑝 ∈ 𝑀 of the Gauss
map 𝑁 is a self-adjoint endomorphism of the tangent
plane 𝑇𝑝𝑀. Therefore, there exists an orthonormal basis
of𝑇𝑝𝑀where 𝑑𝑁𝑝 diagonalizes (principal directions at 𝑝),
being the opposite of the eigenvalues of 𝑑𝑁𝑝, the so-called
principal curvatures of 𝑀 at 𝑝. As the mean curvature 𝐻
is the arithmetic mean of the principal curvatures, the
minimality of𝑀 is equivalent to the vanishing of the trace
of 𝑑𝑁𝑝 or, equivalently, to the property that the matrix of
𝑑𝑁𝑝 in any orthonormal basis of 𝑇𝑝𝑀 is of the form

𝑑𝑁𝑝 = ( 𝑎 𝑏
𝑏 −𝑎 ) .

After identifying 𝑁 with its stereographic projection
onto the extended complex plane, the Cauchy–Riemann
equations allow us to enunciate the eighth equivalent
version of minimality.

Definition 8. A surface 𝑀 ⊂ ℝ3 is minimal when its stere-
ographically projected Gauss map 𝑔∶ 𝑀 → ℂ ∪ {∞} is a
meromorphic function.

Minimal surfaces
appear frequently

in nature.

In fact, for a min-
imal surface 𝑀 ⊂ ℝ3,
not only is the Gauss
map meromorphic but
also the whole immer-
sion can be expressed
by means of holomor-
phic data: as the third
coordinate function 𝑥3 of 𝑀 is a harmonic function,
then it admits locally a conjugate harmonic function 𝑥∗

3 .
Thus, the height differential 𝑑ℎ ∶= 𝑑𝑥3 + 𝑖𝑑𝑥∗

3 is a well-
defined holomorphic 1-form on 𝑀, and the surface can
be conformally parameterized by the explicit formula
(4)

𝑋∶𝑀→ℝ3,𝑋(𝑝)=ℜ∫
𝑝

𝑝0
(1
2 (1

𝑔 − 𝑔) , 𝑖2 (1
𝑔 + 𝑔) , 1)𝑑ℎ,

where ℜ stands for real part and 𝑝0 is the point of 𝑀
that we choose to be sent by 𝑋 to the origin in ℝ3 (i.e.,
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Figure 3. (left) The gyroid (A. Schoen, 1970) has been observed in diblock copolymer systems; (right) nature
often seeks optimal forms in terms of perimeter and area such as minimal surfaces.

Figure 4. Frei Otto modeled the Olympic stadium in
Munich on minimal surfaces.

formula (4) defines 𝑋 up to an ambient translation). The
pair (𝑔, 𝑑ℎ) is usually called the Weierstrass data of 𝑀.

Minimal surfaces appear frequently in nature, not only
in soap films or, more generally, interfaces separating
immiscible fluids at the same pressure but also for
example in diblock copolymers, smectic liquid crystals
(materials that have uniformly spaced layers with fluidlike
order within each layer), crystallography, semiconductor
technology,…even in the cuticular structure in the wing
scales of certain insects! See Figure 3.

Minimization properties for this class of surfaces have
motivated renowned architects such as Frei Otto to use
them to design optimal structures such as the cover of the
Olympic stadium in Munich (Figure 4). The beauty of their
balanced forms has awakened the interest of sculptors
such as Robert Engman and Robert Longhurst. From a

purely mathematical viewpoint, minimal surfaces have
been studied in other ambient spaces besides Euclidean
space, giving rise to applications in such diverse prob-
lems as the positive mass and the Penrose conjectures in
mathematical physics, the Smith conjecture on diffeomor-
phisms of finite order of the three-dimensional sphere,
and Thurston’s geometrization conjecture in 3-manifold
theory.

Classical Minimal Surface Theory
By classical theory we will mean the study of connected,
orientable, complete, embedded minimal surfaces in ℝ3.
Let ℳ𝐶 be the class of complete embedded minimal
surfaces𝑀 ⊂ ℝ3 with finite genus. In order to understand
this last word, recall that the maximum principle for
harmonic functions implies that there are no compact
minimal surfaces without boundary in ℝ3; therefore,
complete minimal surfaces must have topological ends
(roughly speaking, ways to go to infinity intrinsically on
the surface). After compactifying topologically a minimal
surface 𝑀 by adding a point to each end, we define
the genus of 𝑀 as the genus of its compactification. If
𝑔 ∈ ℕ∪ {0} ∪ {∞} and 𝑘 ∈ ℕ∪ {∞}, we let ℳ𝐶(𝑔, 𝑘) be
the subset of ℳ𝐶 that consists of those surfaces with
genus 𝑔 and 𝑘 topological ends. When both 𝑔 and 𝑘 are
finite, we will say that the surface has finite topology.

A surface 𝑀 ⊂ ℝ3 is called proper if every intrinsically
divergent sequence of points of 𝑀 also diverges in ℝ3.
Roughly speaking, a complete surface is proper when its
topological ends are placed at infinity in ℝ3 (an infinite
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roll of paper that wraps infinitely often and limits to an
infinite cylinder from its inside or outside is an example
of a complete surface that is not proper). We will denote
by ℳ𝑃 the subset of ℳ𝐶 formed by the proper minimal
surfaces, and we let ℳ𝑃(𝑔, 𝑘) = ℳ𝑃 ∩ℳ𝐶(𝑔, 𝑘).

Our goal in this section is todescribe themain examples
of minimal surfaces in these families, attending to their
topology, conformal structure, asymptotic behavior, and
the main results of classification. As we go through this
description, we will discuss some of the most interesting
open problems.

Complete Minimal Surfaces with Finite Topology
The trivial example in this class is the plane. The first non-
trivial examples of minimal surfaces (Figure 2) belong to
this class: the catenoid discovered by Euler in 1741 (genus
zero and two ends) and the helicoid found by Meusnier in
1776 (genus zero, one end). Both surfaces support multi-
ple characterizations; among themost classic ones wewill
mention that the catenoid is the unique minimal surface
of revolution together with the plane (Euler) and that
the helicoid and the plane are the unique ruled minimal
surfaces (Catalan). A special mention among examples
in this family is deserved by the Costa torus, the first
complete minimal surface of finite topology discovered
after the aforementioned ones (after 206 years!), which
has genus 1 and 3 ends, and its generalization to any
finite genus 𝑔 ≥ 1, discovered by Hoffman and Meeks,
also with three ends; see Figure 5.

Figure 5. (top) The Costa torus; (bottom) a Hoffman–
Meeks minimal surface.

Regarding the relationship between ℳ𝐶 and ℳ𝑃 in
the case of finite topology, we should highlight a deep
result of Colding and Minicozzi which asserts that every
complete embedded minimal surface with finite topology
is proper. Its proof is an application of the famous theory
by Colding and Minicozzi, a topic which we will talk about
a little later.

For our discussion of the case of finite topology, we
will distinguish two subcases, depending on whether the
number of ends of the minimal surface is one or more
than one.

Surfaces with finite genus and one end. In 2005,Meeks and
Rosenberg applied Colding–Minicozzi theory to show that
the plane and the helicoid are the only possible examples
in ℳ𝑃(0, 1) (i.e., they gave the full classification of the
simply connected properly embedded minimal surfaces).
By the above properness result of Colding and Minicozzi,
the same uniqueness result holds in ℳ𝐶(0, 1). As for the
asymptotic behavior of surfaces in ℳ𝑃(𝑔, 1) = ℳ𝐶(𝑔, 1)
with 1 ≤ 𝑔 < ∞, Bernstein and Breiner proved in 2011
that every surface in ℳ𝑃(𝑔, 1) is asymptotic to a helicoid
and conformally parabolic.2 For this reason, surfaces
in ℳ𝑃(𝑔, 1) are usually called helicoids of genus 𝑔. On
existence results in this line, it is worth mentioning that
Hoffman, Weber, and Wolf discovered in 2009 a helicoid
of genus one with the conformal structure of a rhombic
torus minus one point and that Hoffman, Traizet, and
White have recently proven the existence of examples in
ℳ𝑃(𝑔, 1) for each finite 𝑔 ≥ 1 (arXiv 2015). An important
open problem about ℳ𝑃(𝑔, 1) is the possible uniqueness
of examples with a given genus: this uniqueness is known
in the case 𝑔 = 0, and it is conjectured that there exists
a unique helicoid of genus 𝑔 for each 𝑔 ≥ 1, but even the
local version of this result is not known.

Surfaces with finite genus and 𝑘 ends, 2 ≤ 𝑘 < ∞. The
main structural result in this case is due to Collin, who
proved in 1997 that if 𝑀 ∈ ℳ𝑃(𝑔, 𝑘) has 𝑔, 𝑘 finite and
𝑘 ≥ 2, then 𝑀 lies in a particularly well-studied family:
surfaces with finite total curvature, i.e., those where the
Gaussian curvature 𝐾 is integrable:

(5) ∫
𝑀
𝐾𝑑𝐴 = −∫

𝑀
|𝐾|𝑑𝐴 > −∞.

(Note that since the mean curvature, the sum of the
principal curvatures, is zero, the Gauss curvature, the
product of the principal curvatures, is nonpositive.) By
previous work of Huber and Osserman, condition (5)
implies that 𝑀 is conformally equivalent to a compact
Riemann surface𝕄of genus𝑔 towhichwehave removed 𝑘
points (in particular,𝑀 is conformally parabolic), andboth
the Gaussmap 𝑔∶ 𝑀 → ℂ∪{∞} and the height differential
𝑑ℎ of 𝑀 extend to holomorphic objects defined on 𝕄.
This allows the application of powerful tools of complex
analysis and algebraic geometry of compact Riemann
surfaces; in some way, and given the lack of compactness
of a complete minimal surface in ℝ3, those with finite
total curvature are the closest ones to being compact.

2𝑀 is conformally parabolic if it does not admit any nonconstant,
nonpositive subharmonic function.
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The asymptotic behavior of these minimal surfaces is
also well known: every end is asymptotic to a plane or
half-catenoid. On uniqueness results, we highlight the
following ones:

1. Schoen proved in 1983 that if 𝑀 ∈ ℳ𝐶(𝑔, 2) has
finite total curvature, then 𝑀 is a catenoid. This is
an application of the famous reflection method of
moving planes of Alexandrov, which is based on
the maximum principle for the equation (2).

2. In 1991, López and Ros characterized the catenoid
as the only surface in ℳ𝐶(0, 𝑘) with finite total
curvature together with the plane. Again the idea is
based on the maximum principle, but now applied
to what has since been dubbed the López–Ros defor-
mation, a 1-parameter family of minimal surfaces
defined in terms of the Weierstrass data (𝑔, 𝑑ℎ) of
a given minimal surface 𝑀. The López–Ros defor-
mation only exists under a certain hypothesis on
the flux map of the original surface.3

3. In 1984, Costa classified the surfaces in ℳ𝐶(1, 3)
with finite total curvature. These surfaces reduce
to the Costa torus and a 1-parametric family of
thrice-punctured tori discovered by Hoffman and
Meeks by deforming the Costa torus (and studied
later by Hoffman and Karcher).

The previous result by Costa was the first complete
description of a moduli space ℳ𝐶(𝑔, 𝑘) that does not
reduce to a single surface:ℳ𝐶(1, 3) has the structure of a
noncompact 1-dimensional manifold, identifiable with an
open interval. Generalizing this result, in 1996 Pérez and
Ros endowed the moduli spaces ℳ𝐶(𝑔, 𝑘) (0 ≤ 𝑔 < ∞,
2 ≤ 𝑘 < ∞) with a differentiable structure of dimension
𝑘 − 2 around each minimal surface 𝑀 ∈ ℳ𝐶(𝑔, 𝑘) with
an additional nondegeneracy assumption that affects the
linear space of Jacobi functions on 𝑀, which are the
solutions 𝑢∶ 𝑀 → ℝ to the second-order, linear elliptic
PDE

Δ𝑢− 2𝐾𝑢 = 0 on 𝑀,
where 𝐾 is the Gaussian curvature of 𝑀. Until now, all
known examples in ℳ𝐶(𝑔, 𝑘) satisfy this nondegeneracy
hypothesis. We highlight that the dimension of the space
of nondegenerate surfaces in ℳ𝐶(𝑔, 𝑘) does not depend
on the genus 𝑔, but only on the number of ends 𝑘.

A major open problem is the Hoffman–Meeks conjec-
ture: If 𝑀 ∈ ℳ𝐶(𝑔, 𝑘), then 𝑘 ≤ 𝑔 + 2. The best known
result to date in this regard is due to Meeks, Pérez, and
Ros (arXiv 2016), who proved the existence of an upper
bound for 𝑘 depending only on 𝑔, again by application of
the Colding–Minicozzi theory.

Another important open problem consists of deciding
if there exist surfaces in somemoduli spaceℳ𝐶(𝑔, 𝑘) that
do not satisfy the nondegeneracy condition mentioned
above, and if they do exist, provide any “reasonable”

3The flux of a minimal surface 𝑀 ⊂ ℝ3 is the linear map
𝐹∶ 𝐻1(𝑀) → ℝ3 that associates to each 1-dimensional homology
class [𝑐] ∈ 𝐻1(𝑀) the integral along a representative 𝑐 ∈ [𝑐] of
the unit vector field along 𝑐 that is tangent to𝑀 and orthogonal to
𝑐. The condition for the López–Ros deformation to be well defined
on 𝑀 is that the range of 𝐹 is at most 1.

structure to the space ℳ𝐶(𝑔, 𝑘) around such a singular
surface (as an orbifold ?).

Minimal Surfaces with Infinite Topology
Next we enter the world of classical minimal surfaces
with infinite topology, i.e., those that have either infinitely
many ends or infinite genus. The most basic examples in
this family were discovered by Riemann in the nineteenth
century (and posthumously published by his disciple Hat-
tendorf) and consist of a 1-parametric family of properly
embedded minimal surfaces, invariant by a translation,
with genus zero and infinitely many ends asymptotic to
equally spaced parallel planes. The Riemann minimal ex-
amples admit the following fascinating characterization:
together with the plane, the helicoid and the catenoid,
they are the unique properly embedded minimal surfaces
in ℝ3 that can be foliated by circles and lines in parallel
planes (indeed, Riemann discovered these examples by
imposing this property); see Figure 6.

The Riemann minimal examples show how the period-
icity of a surface can be regarded as a method to produce
examples of infinite topology: if the quotient surface by
the group of isometries is not simply connected, then
the lifted surface in ℝ3 has infinite topology. The same
thing happens with other examples of minimal surfaces
discovered in the nineteenth century, such as those shown
in Figure 6:

1. The singly periodic Scherk minimal surface (second
from the left in Figure 6) is invariant by a cyclic
group of translations. The quotient surface by the
cyclic group has genus zero and four ends (asymp-
totic to half-planes; these ends are called Scherk
type ends); viewed in ℝ3, this surface has infinite
genus and one end. We can see this example as
a desingularization of two orthogonal planes by
introducing infinitely many alternating holes form-
ing a 45∘ angle with the planes along their line of
intersection. As in the case of the Riemann mini-
mal examples, the singly periodic Scherk minimal
surface can be deformed by a 1-parametric family
of singly periodic, properly embedded minimal sur-
faces, obtained by desingularization of planes that
intersect with an angle 𝜃 ∈ (0,𝜋).

2. The doubly periodic Scherk minimal surface (third
from the left in Figure 6) is invariant by an infinite
group generated by two translations of linearly
independent vectors. Again, the quotient surface
has genus zero and four ends (of Scherk type);
viewed inℝ3, this surface has infinite genus and one
end. It can be considered as the desingularization of
two infinite families of equally spaced vertical half-
planes, one family inside {(𝑥, 𝑦, 𝑧) | 𝑧 > 0} and the
otherone in {(𝑥, 𝑦, 𝑧) | 𝑧 < 0}, in suchaway thathalf-
planes in different families cut at right angles. This
surface also lies in a 1-parameter family of properly
embedded, doubly periodic minimal surfaces, each
of which desingularizes two infinite families of
vertical half-planes in the open upper and lower
half-spaces of ℝ3, where the parameter is the angle
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Figure 6. From left to right: a Riemann minimal example, singly and doubly periodic Scherk surfaces, and the
triply periodic Schwarz 𝑃-surface.

𝜃 ∈ (0,𝜋) that the half-planes in the two families
form. There is a direct relationship between the
Scherk singly and doubly minimal surfaces, which
reflects the fact that everyharmonic functionadmits
(locally) a conjugate harmonic function.

3. The triply periodic Schwarz 𝑃-surface (Figure 6,
right) is invariant by the group generated by three
translations of linearly independent vectors. The
quotient surface by this lattice of translations is
compact with genus three and lives in a three-
dimensional cubic torus. Viewed in ℝ3, this surface
has infinite genus and one end. The Schwarz 𝑃-
surface is one of the most famous triply periodic
minimal surfaces, a class of surfaces with multi-
ple applications to crystallography and material
science: the isometry group of each triply periodic
minimal surface𝑀 ⊂ ℝ3 is a crystallographic group,
and the quotient surface 𝑀 over the lattice Γ of
translations of rank 3 that leaves 𝑀 invariant di-
vides the three-dimensional torus ℝ3/Γ into two
regions of equal volume called labyrinths. The gy-
roid (Figure 3, left) is another famous triply periodic
minimal surface with compact quotient of genus
three. The classification of triply periodic embedded
minimal surfaces with quotient of genus three (the
lowest possible nontrivial value) is another major
open problem.

In view of the above examples, we could ask ourselves
if the only method of producing minimal surfaces with
infinite topology is by imposing periodicity. The answer is
no, as shown in 2007 by Hauswirth and Pacard, who used
gluing techniques4 to merge a Hoffman–Meeks minimal
surface (we mentioned these surfaces when describing
examples in ℳ𝐶(𝑔, 3) in the subsection “Complete Min-
imal Surfaces with Finite Topology”) with two halves of
a Riemann minimal surface ℛ. In Figure 7 (left) we can
see a schematic representation of one of the examples
by Hauswirth and Pacard, when the central surface to be

4 This technique consists of a sophisticated application of the im-
plicit function theorem to the mean curvature operator defined
between certain Banach spaces.

merged is the Costa torus (i.e., 𝑔 = 1). Also by gluing tech-
niques, but using Riemann surfaces with nodes, Traizet
was able to prove in 2012 the existence of a complete,
nonperiodic minimal surface with infinite genus and in-
finitely many ends asymptotic to half-catenoids (Figure 7
right). In summary, there are lots of examples in the case
of infinite topology.

As for uniqueness results for minimal surfaces of
infinite topology, it is clear in light of the previous
paragraph that we must distinguish in some way the
families that we have found: a reasonable starting point
could be imposing some kind of periodicity. Here, it
is worth mentioning the following classification results
for moduli spaces of periodic minimal surfaces with
prescribed topology:

1. The Riemann minimal examples are the unique
properly embedded minimal tori with finitely many
planar ends in a quotient of ℝ3 by a translation
(Meeks, Pérez, and Ros, 1998). The number of
ends must be even, and when we fix this number
the corresponding moduli space is a noncompact
manifold of dimension 1.

2. The Scherkdoublyperiodicminimal surfaces are the
unique properly embedded minimal surfaces with
genus zero and finitely many ends in a quotient of
ℝ3 by two independent translations (Lazard–Holly
and Meeks, 2001). Again the number of ends is
necessarily even, and for a fixed number of ends,
the moduli space is diffeomorphic to an open
interval.

3. The moduli spaces of properly embedded minimal
tori with any fixed finite number of parallel planar
ends in a quotient ofℝ3 by two linearly independent
translations were described in 2005 by Pérez, Ro-
dríguez, and Traizet. Each of these moduli spaces
(for any fixed even number of ends) is a noncom-
pact manifold of dimension 3 whose surfaces are
called KMR examples (in honor of Karcher, Meeks,
and Rosenberg, who previously found 1-parameter
families of these surfaces in this moduli space).

4. The moduli spaces of properly embedded minimal
surfaces with genus zero and finitely many ends of
Scherk type in a quotient ofℝ3 by a translation were
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Figure 7. From left to right: schematic representations of a Hauswirth–Pacard minimal surface with genus 1 and
of the example of infinite genus by Traizet: two nonperiodic, complete embedded minimal surfaces with
infinite topology.

classified in 2007 by Pérez and Traizet. In this case,
these moduli spaces are noncompact manifolds of
dimension 2𝑘 − 3 (here 2𝑘 is the number of ends),
whose surfaces were discovered by Karcher in 1988
as a generalization of the Scherk simply periodic
minimal surfaces.

The four uniqueness results listed above have a com-
mon flavor. First, periodicity is used in a strong way,
since it allows working in the quotient of ℝ3 by the
corresponding group of isometries, and the quotient min-
imal surfaces always have finite total curvature in the
sense of equation (5); in this setting, one can control
the asymptotic geometry and the conformal representa-
tion of the minimal surfaces under study. Second, the
desired uniqueness follows from a continuity argument:
one starts by proving that any surface 𝑀 in each of
these moduli spaces can be deformed within the moduli
space (openness part) until arriving at a point 𝑀∞ in
the boundary of the moduli space, which turns out to
be a properly embedded minimal surface with simpler
topology or periodicity than those in the original moduli
space (compactness part); this compactness requires a
rather complete understanding of the possible limits of
sequences of minimal surfaces in the original moduli
space. Once we have arrived at 𝑀∞, the desired global
uniqueness follows from an inverse function theorem
argument (local uniqueness around 𝑀∞) that needs the
previous classification of the moduli space of minimal
surfaces to which 𝑀∞ belongs. This last aspect reveals
a stratified structure in the moduli spaces of embedded
minimal surfaces with prescribed topology and periodic-
ity: the boundary of a given moduli space is the union
of other moduli spaces of minimal surfaces with simpler
topology or periodicity. For instance, the description of
the moduli space in item 3 above requires solving the
classification problem in item 4.

The strategy sketched in the preceding paragraph fails
badly if we seek classification results forminimal surfaces
with infinite topology without imposing periodicity, but
in this case the Colding–Minicozzi theory is of great help,
as we will explain next.

Colding–Minicozzi Theory
Consider the following question:

Problem 9. What are the properly embedded minimal sur-
faces in ℝ3 with genus zero?

Suppose that 𝑀 ⊂ ℝ3 is a surface that meets the
conditions of Problem 9. As explained above, in the case
that 𝑀 has only one end we know that 𝑀 is a plane or
a helicoid (Meeks and Rosenberg). If 𝑀 has 𝑘 ends with
2 ≤ 𝑘 < ∞, then 𝑀 is a catenoid by the theorems of
Collin and López–Ros. It remains to study the case that
𝑀 has infinitely many ends. If we knew that such an 𝑀
were invariant by a translation 𝑇, then it would not be
difficult to check that the quotient surface of 𝑀 by the
cyclic group generated by 𝑇 is a torus with finitely many
ends, and hence 𝑀 is a Riemann minimal example by the
1998 result of Meeks, Pérez, and Ros. Therefore, a way of
solving Problem 9 is to prove that if the number of ends
of 𝑀 is infinite, then 𝑀 is periodic.

Often we face the problem of understanding the possi-
ble limits of a sequence of embedded minimal surfaces.
As a trivial example, let us think of a surface 𝑀 ⊂ ℝ3 that
is invariant by a translation of vector 𝑣 ∈ ℝ3 − {0}. The
constant sequence {𝑀𝑛 ∶= 𝑀−𝑛𝑣 = 𝑀}𝑛∈ℕ has as trivial
limit 𝑀 itself. This naive example suggests a possible way
to solve Problem 9: suppose that a properly embedded
minimal surface 𝑀 ⊂ ℝ3 with infinitely many ends is a
solution to this problem. As the number of ends of 𝑀 is
infinite, one can deduce that𝑀 has infinite total curvature,
whencewe can find a divergent sequence of points𝑝𝑛 ∈ 𝑀
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where the unit normal to 𝑀 takes the same value. It is
reasonable to try to conclude that {𝑀𝑛 = 𝑀−𝑝𝑛}𝑛 has (at
least) a convergent subsequence as a step to demonstrate
the desired periodicity of 𝑀. We have thus transformed
Problem 9 into another one, perhaps more ambitious:

Problem 10. Under what conditions can we extract a con-
vergent subsequence from a given sequence of embedded
minimal surfaces?

Suppose that {𝑀𝑛}𝑛 is a sequenceof embeddedminimal
surfaces in an open set 𝐴 ⊂ ℝ3. Also assume that {𝑀𝑛}𝑛
has at least one accumulation point, since we do not want
the 𝑀𝑛 to completely escape and have nothing to analyze
in the limit. Each surface 𝑀𝑛 can be locally written as
the graph of a function 𝑢𝑛 defined in an open subset of
the tangent plane of 𝑀𝑛 at a given point, and the size
of the domain of 𝑢𝑛 can be uniformly controlled if we
have uniform local bounds for the Gaussian curvatures
(equivalently, for the second fundamental forms) of the
surfaces. If in addition we have uniform local area bounds
for the𝑀𝑛, then we will control the number of graphs that
lie in a given regionof𝐴. Therefore,working in a very small
(but uniform) scale, we will deduce that every surface 𝑀𝑛
gives rise to a single graphing function 𝑢𝑛. Thus we have
transformed Problem 10 about convergence of surfaces
into another problem, the convergence of graphs. In this
setting, the uniform local curvature bounds for the 𝑀𝑛
produce equicontinuity of the 𝑢𝑛, and the fact that we
are working locally produces uniform boundedness for
the 𝑢𝑛. Therefore, the Arzelá–Ascoli Theorem insures
that a subsequence of the 𝑢𝑛 converges uniformly to a
limit function 𝑢∞ that can be proven to satisfy the same
PDE (2) as the 𝑢𝑛. A prolongation argument now implies
that a subsequence of {𝑀𝑛}𝑛 converges to an embedded
minimal surface in 𝐴, and thus our Problem 10 is solved
in this case.

If we do not have local area bounds for the 𝑀𝑛 but still
assume local uniformcurvature bounds, reasoning similar
to the above leads to the conclusion that a subsequence
of {𝑀𝑛}𝑛 converges to a natural generalization of the
notion of minimal surface: a lamination whose leaves are
minimal surfaces. Without going into detail, a lamination
ℒ of 𝐴 is a closed union (in the induced topology on 𝐴) of
surfaces embedded in 𝐴, called leaves of ℒ, with a certain
local product structure. This means that we can take
local coordinates in 𝐴 that transform the leaves into the
product of a two-dimensional disk with a closed subset
of ℝ, which we can think of as the heights of disjoint
copies of that disk placed horizontally (see Figure 8).
This local product structure endows the leaves of ℒ with
the structure of smooth, pairwise disjoint surfaces. A
lamination is said to be minimal if its leaves are all
minimal surfaces. For example, if 𝑍 is a nonempty closed
subset of ℝ, then the collection of horizontal planes
ℒ𝑍 = {𝑃𝑧 = ℝ2 × {𝑧} | 𝑧 ∈ 𝑍} is a minimal lamination of
𝐴 = ℝ3 whose leaves are the planes 𝑃𝑧. In the case that a
laminationℒof𝐴does not leave any empty spaces in𝐴, we
call it a foliation of 𝐴 (ℒ𝑍 is a foliation of ℝ3 when 𝑍 = ℝ).
The theory of minimal laminations is a natural extension
of the one of minimal surfaces. However, we still have not
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Figure 8. The open set 𝐴 is covered by images 𝑈𝛽 of
local charts 𝜑𝛽, each one transforming a collection of
disks at heights lying in a closed subset 𝐶𝛽 of [0, 1]
into portions of the leaves of ℒ.

provided any examples of a nontrivial minimal lamination
of ℝ3 that does not consist of a single embedded minimal
surface other than a collection of planes ℒ𝑍 as above.

Coming back to our Problem 10, what can we say
about the limit of the 𝑀𝑛 if these embedded minimal
surfaces do not have uniform local bounds for their
second fundamental forms? Here is where the theory
of Colding–Minicozzi comes to our aid. Following the
previous notation, the lack of uniform local curvature
bounds implies that the Gaussian curvature of the 𝑀𝑛
blows up at some point of 𝐴; i.e., the following set is
nonempty:

(6) 𝒮 = {𝑥 ∈ 𝐴 | sup |𝐾𝑀𝑛∩𝔹(𝑥,𝑟)| → ∞, ∀𝑟 > 0} ,
where 𝐾Σ denotes the Gaussian curvature of a surface Σ
and𝔹(𝑥, 𝑟) is the closedball centeredat𝑥 ∈ ℝ3 with radius
𝑟 > 0. The Colding–Minicozzi theory describes the limit
of (a subsequence of) the 𝑀𝑛 in the above scenario under
an additional hypothesis: each 𝑀𝑛 must be topologically
a compact disk that is contained in a ball of radius 𝑅𝑛 > 0,
say centered at the origin, with boundary 𝜕𝑀𝑛 contained
in the boundary sphere of that ball. The description of
this limit is very different depending upon whether the
sequence of radii 𝑅𝑛 diverges or stays bounded.
Theorem 11 (Colding–Minicozzi). Given 𝑛 ∈ ℕ, let 𝑀𝑛
be an embedded minimal disk in a closed ball 𝔹(𝑅𝑛) =
𝔹(0⃗,𝑅𝑛) with 𝜕𝑀𝑛 ⊂ 𝜕𝔹(𝑅𝑛). If 𝑅𝑛 → ∞ and 𝒮∩𝔹(1) ≠ Ø,
then a subsequence of the𝑀𝑛 converges to a foliation ofℝ3

by parallel planes, away from a straight line5 (called the
singular set of convergence), along which the curvature of
𝑀𝑛 blows up when 𝑛 → ∞.

To better understand the last result, we will use the
following example. Consider the standard vertical helicoid
𝐻 = {(𝑥,𝑦, 𝑧) | 𝑥 sin𝑧 = 𝑦 cos𝑧}. Take a sequence of
positive numbers 𝜆𝑛 tending to zero, and consider for
each 𝑛 ∈ ℕ the homothetic copy 𝑀𝑛 = 𝜆𝑛𝐻 of 𝐻 by ratio
𝜆𝑛 that is again minimal and simply connected. As 𝑛
increases, 𝑀𝑛 can be thought of as a new view of 𝐻 from
a viewpoint that becomes further and further away, as
in Figure 9. The farther away we look at the helicoid 𝐻,
the more it looks like a collection of horizontal planes
separated by smaller and smaller distances, and so in the

5In fact, Colding and Minicozzi proved that the singular set of
convergence is a Lipschitz arc transverse to the limit foliation. Us-
ing the uniqueness of the helicoid as the only nonflat surface in
ℳ𝑃(0, 1), Meeks deduced in 2004 that this Lipschitz arc is indeed
a line.
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Figure 9. Homothetic images of the same vertical helicoid 𝐻, with ratio 𝜆𝑛 = 1/2𝑛.

Figure 10. A minimal lamination of the punctured unit
ball, with three leaves and a singularity at the origin.

limit we obtain the foliation of ℝ3 by horizontal planes.
Observe that each leaf of this limit foliation is flat (its
Gaussian curvature is identically zero) and the Gaussian
curvatures of the 𝑀𝑛 converge to zero away from the
𝑧-axis. However, since the Gaussian curvature of 𝐻 along
the 𝑧-axis is constant −1, the Gaussian curvature of 𝑀𝑛
along the same axis is −1/𝜆2

𝑛, which tends to infinity.
In other words, the singular set 𝒮 defined in (6) is the
𝑧-axis in this example. Also note that the limit foliation
is perfectly regular along 𝒮; it is only the convergence of
the 𝑀𝑛 to the limit that fails along 𝒮. This limit object
is known as a limiting parking garage structure with one
column: away from the 𝑧-axis, the structure becomes
arbitrarily flat and horizontal (this is where cars park),
and to travel from one parking floor to another one, cars
have to go up the ramp (around the column at the 𝑧-axis).
Well, Theorem 11 tells us that the general behavior of the
limit of the embedded minimal disks 𝑀𝑛 when the radii
𝑅𝑛 tend to infinity is essentially the same as this example.

The description when the radii 𝑅𝑛 remain bounded
can also be visualized with an example. In 2003, Colding
and Minicozzi produced a sequence of minimal disks 𝑀𝑛
embedded in the closed unit ball 𝔹(1) and of helicoidal
appearance, such that the number of turns that the
boundary curve 𝜕𝑀𝑛 makes around the 𝑧-axis tends
to infinity as 𝑛 → ∞, and the limit of the 𝑀𝑛 is a
minimal lamination ℒ of 𝔹(1) − {0⃗} that consists of
three leaves: one is the horizontal punctured unit disk

𝔻∗ = {(𝑥,𝑦, 0) | 0 < 𝑥2 + 𝑦2 < 1}, and the other two are
nonproper minimal surfaces 𝐿+, 𝐿− that rotate infinitely
many times from above and below 𝔻∗, accumulating on
𝔻∗ as in Figure 10. In this case, the Gaussian curvature
of the 𝑀𝑛 blows up at the origin, but this time 0⃗ is a
genuine singularity of the limit lamination ℒ, which does
not admit a smooth extension across 0⃗.

The theoretical description by Colding and Minicozzi
for the limit of a sequence of compact, embeddedminimal
disks 𝑀𝑛 ⊂ 𝔹(𝑅𝑛) with 𝜕𝑀𝑛 ⊂ 𝜕𝔹(𝑅𝑛) and bounded
radii 𝑅𝑛 is very technical, and we will omit it here.
Instead, we will simply mention that after extracting a
subsequence, the 𝑀𝑛 converge to a minimal lamination
with singularities. The singularities of such a limit singular
minimal lamination forma closed set, and each singularity
is of one of the following two types:

(a) Isolated singularities, in which case Figure 10 shows
essentially the behavior of the limit object: there
is a leaf 𝐷∗ of the lamination that limits to the
singularity 𝑝 (in fact, 𝐷∗ extends smoothly across
𝑝 to an embedded minimal disk 𝐷) and one or
two nonproper leaves, which rotate infinitely many
times and accumulate at𝐷∗. Furthermore, portions
of the 𝑀𝑛 outside a solid cone of axis 𝑝 + (𝑇𝑝𝐷)⟂
can be written as multivalued graphs over annular
regions of𝑇𝑝𝐷, and as𝑛 → ∞, these annular regions
converge to a punctured disk, at the same time that
the number of turns of the multivalued graphs
inside the 𝑀𝑛 become arbitrarily large and the
multivalued graphs collapse into 𝐷∗ as in Figure 11
(left).

(b) Nonisolated singularities, each of which is the limit
of at least one sequence of isolated singularities, as
in Figure 11 (right).

It should also be noted that in the above description,
the set 𝒮 where the Gaussian curvatures of the disks 𝑀𝑛
blow up consists of not only the singularities of the limit
lamination ℒ but also possibly embedded arcs of class
𝐶1,1 around which ℒ is a local foliation, as in Figure 11
(left). In particular, these arcs are not singularities of ℒ
except for their end points, as in the convergence of the
𝑀𝑛 to ℒ in Theorem 11.

The previous description leads us directly to the study
of the singularities of a minimal lamination of an open
subset ofℝ3. Does this set have any reasonable structure?
This question is another open central problem in minimal
surface theory. Along this line, it is worth mentioning two
recent results of Meeks, Pérez, and Ros (2016):
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Figure 11. Left: schematic representation of an isolated singularity 𝑝 of a singular minimal lamination ℒ
obtained as a limit of embedded minimal disks 𝑀𝑛, with a nonproper leaf 𝐿+ at one side of the disk leaf 𝐷 that
passes through 𝑝. Locally around 𝑝 and outside a solid cone of vertex 𝑝 and axis 𝑝+ (𝑇𝑝𝐷)⟂, 𝐿+ is a
multivalued graph. The other side of 𝐷 is foliated by leaves of ℒ. The convergence is singular along a 𝐶1,1 arc Γ.
Right: at a nonisolated singularity 𝑝, the disk leaf 𝐷 = 𝐷(𝑝) passing through 𝑝 is also the limit of the
corresponding disk leaves 𝐷(𝑝𝑚) associated to isolated singularities 𝑝𝑚 that converge to 𝑝.

Theorem 12 (Local Removable Singularity Theorem).
Let ℒ ⊂ 𝔹(1) − {0⃗} be a minimal lamination. Then ℒ ex-
tends to a minimal lamination of 𝔹(1) (i.e., the singularity
at 0⃗ is removable) if and only if the Gaussian curvature
function 𝐾ℒ of the lamination does not blow up at the
origin faster than the square of the extrinsic distance to 0⃗;
i.e., |𝐾ℒ|(𝑥) ⋅ ‖𝑥‖2 is bounded in ℒ.

It follows fromTheorem12 that if the function |𝐾ℒ|(𝑥)⋅
‖𝑥‖2 is bounded in a minimal lamination ℒ ⊂ 𝔹(1) − {0⃗},
then |𝐾ℒ|(𝑥) ⋅ ‖𝑥‖2 extends across the origin with value
zero. Another consequence of this theorem is that in the
example of Figure 10, the Gaussian curvature of the disks
𝑀𝑛 blows up faster than the square of the distance to the
origin as 𝑛 → ∞.

Another result about singularities of minimal lamina-
tions is a global version of Theorem 12 that classifies the
minimal laminations of ℝ3 − {0⃗} with quadratic decay of
curvature:

Theorem 13. Let ℒ ⊂ ℝ3−{0⃗} be a nonflat minimal lami-
nation such that |𝐾|(𝑥) ⋅ ‖𝑥‖2 is bounded. Then ℒ extends
across the origin to a minimal lamination of ℝ3 that con-
sists of a single leaf 𝑀, which is a properly embedded min-
imal surface with finite total curvature. In particular, |𝐾|
decays much faster than quadratically with the distance
to the origin: |𝐾|(𝑥) ⋅ ‖𝑥‖4 is bounded in 𝑀.

We have said that in order to apply the theory of
Colding–Minicozzi toa sequence𝑀𝑛 ofembeddedminimal
surfaces, we need to assume that the 𝑀𝑛 are compact
disks with boundaries in ambient spheres. This condition
is not really a restriction, as it can be naturally obtained
by a rescaling argument so that the injectivity radius
function of the rescaled minimal surfaces is uniformly
bounded away from zero (Meeks, Pérez, and Ros [4]).

Classification of the Properly Embedded Minimal
Surfaces in ℝ3 with Genus Zero
To finish our brief tour through the current state of the
classical minimal surface theory, we return to Problem 9
on the properly embedded minimal surfaces𝑀 in ℝ3 with

genus zero. In the first paragraph of the section “Colding–
Minicozzi Theory” we explained that the problem reduces
to proving that if 𝑀 has infinitely many ends, then 𝑀
is periodic. This strategy, which uses Colding–Minicozzi
theory as we have mentioned above, was the one used by
Meeks, Pérez, and Ros [5] to prove the following result:

Theorem 14. Every properly embedded minimal surface
𝑀 ⊂ ℝ3 with genus zero is either a plane, a helicoid, a
catenoid, or one of the Riemann minimal examples. In par-
ticular, 𝑀 is foliated by circles or straight lines in parallel
planes.

A final remark about the proof of Theorem 14 is in
order. The theory of Colding and Minicozzi yields only
the quasi-periodicity of 𝑀 (this means that if {𝑝𝑛}𝑛 is a
divergent sequence of points in 𝑀, then a subsequence
of {𝑀−𝑝𝑛}𝑛 converges to a properly embedded minimal
surface in ℝ3 with genus zero and infinitely many ends).
The key to proving the desired periodicity of 𝑀 once we
know it is quasi-periodic is a fascinating application of
the theory of integrable systems andmore precisely of the
holomorphic Korteweg-de Vries equation, a third-order
PDE that models mathematically the behavior of waves
on shallow water surfaces.
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